Manage

# Штефанец Валерия Павловна

# Влияние координационного окружения ионов 4f-металлов на процессы медленной магнитной релаксации в солевых и нейтральных редкоземельных β-дикетонатах и композитах на их основе

1.4.4. – Физическая химия

# АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Федеральном исследовательском центре проблем химической физики и медицинской химии Российской академии наук

Научный Санина Наталия Алексеевна руководитель: доктор химических наук

Официальные Федин Матвей Владимирович

оппоненты: доктор физико-математических наук, член-корреспондент РАН,

директор и главный научный сотрудник ФГБУН Института

«Международный томографический центр» Сибирского отделения

Российской академии наук

Павлов Александр Александрович

кандидат химических наук, ведущий научный сотрудник ФГБУН Института общей и неорганической химии имени Н.С. Курнакова

Российской академии наук

Ведущая ФГБУН Институт элементоорганических соединений организация: имени А.Н. Несмеянова Российской академии наук

Защита диссертации состоится 17 декабря 2025 г. в 12 час. 00 мин. на заседании Диссертационного совета 24.1.108.01 на базе ФГБУН Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук по адресу 142432, Черноголовка, Московская область, проспект академика Семёнова, 1, зал Ученого Совета.

С диссертацией можно ознакомиться в библиотеке ФИЦ ПХФ и МХ и на сайте icp-ras.ru.

Автореферат разослан

2025 г.

Ученый секретарь диссертационного совета, доктор химических наук

Джардималиева Г. И.

# ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Магнитные материалы привлекали большое внимание на протяжении всей истории человечества. Магниты обычно ассоциировались с металлами и сплавами, которые являются тяжелыми материалами макроскопического размера. По этой причине прорыв в 1993 году, когда была открыта молекула, ведущая себя как магнит на наноскопическом уровне, привлек большой интерес как экспериментаторов, так и теоретиков из-за потенциального применения таких молекул в современных технологиях. Особое внимание, при этом, уделялось мономолекулярным (в англоязычной литературе используется термин Single-Molecule Magnets (SMM) и моноионным (Single-Ion Magnets (SIM)) магнитам.

В настоящее время надежно установлено, что молекулярные наномагниты на основе комплексов металлов с органическими лигандами демонстрируют при гелиевых температурах необычные магнитные свойства: медленную магнитную релаксацию и магнитный гистерезис, в масштабе одной молекулы или одной молекулярной цепочки. Намагниченность в таких системах сохраняется даже в отсутствие прикладного поля, и поэтому, они могут быть использованы для хранения информации, в квантовых вычислительных устройствах и спинтронике на молекулярном уровне. В современных условиях это обусловлено непрерывно возрастающей потребностью уменьшения электронной базы вычислительных устройств и увеличения плотности записи информации. Создание молекулярных наномагнитов с высокими температурами блокирования намагниченности приведет к технологическим прорывам в области информационных спинтроники технологий: интенсивному развитию молекулярной (спиновые переключатели, молекулярные аналоги мультиферроиков и т. д.) и квантовых вычислений (молекулярные квантовые клеточные автоматы). Идеология использования спинов электронов для хранения и обработки информации значительно продвигает электронику и открывает новые пути для уменьшения тепловых потерь, миниатюризации элементов памяти и процессоров, а также имеет прямое отношение к развитию квантового компьютинга. Безусловно, достоинствами подхода с применением SMM является то, что информация, закодированная в спинах, сохраняется, когда устройство выключено, ею можно манипулировать без использования магнитных полей, и её можно записывать с использованием низких энергий.

Степень разработанности темы исследования. Последние два десятилетия характеризовались активным интересом исследователей к дизайну SMM на основе редкоземельных элементов (РЗЭ). Следует отметить, что РЗЭ изучались в качестве кандидатов на применение в различных технологических областях: так, например, они

незаменимы для разработки технологий возобновляемой энергии – их уникальные свойства позволяют производить эффективные ветровые, электромобили, солнечные панели, системы хранения энергии, водород и каталитические преобразователи. Прогресс в области исследований и применения РЗЭ в биологии и медицине приведет к быстрому расширению нашего понимания роли РЗЭ в живых организмах, а также к увеличению использования особых свойств РЗЭ для диагностики и создания медицинских приборов высокой емкости. РЗЭ являются отличными кандидатами для легирования наноструктурных углеродных точек (Carbon Dots) и получения гибридных материалов с оптимизированными свойствами и квантовыми выходами. Такие гибридные материалы позволяют сочетать выгодные свойства, радикально улучшая их световые и магнитооптические характеристики визуализации, и "дают зеленый свет" многочисленным практическим и технологическим приложениям. На основе РЗЭ получены металлоорганические каркасы как эффективные и стабильные гетерогенные катализаторы, перспективные адсорбенты для красителей, новые неорганические люминофоры с отрицательным тепловым расширением, перспективные многофункциональные флуоресцентные сенсоры с хорошей возможностью повторного использования и высокой чувствительностью. Но именно высокая магнитная анизотропия, характерная для комплексов РЗЭ с органическими лигандами, возникающая из-за их большого орбитального углового момента, обусловливает те специфические особенности, которые свойственны SMM: длительное время релаксации намагниченности и, в конечном итоге, наличие магнитного гистерезиса в диапазоне температур 4-77 К. Областью растущего интереса является химический дизайн эффективных и одновременно устойчивых к воздействию воздуха SMM на основе комплексов РЗЭ (3+) с геометрией, которая позволяет подавить туннелирование, приводящее к ухудшению намагниченности в нулевом поле и соответствующему уменьшению (или даже исчезновению) коэрцитивной силы, и может улучшить анизотропию систем и, соответственно, их функционирование. В то же время молекулярная природа SMM архитектур облегчает введение некоторых функциональных составляющих в их кристаллическую структуру, например, для фото- или электроуправления, которые могут влиять на магнитную подрешетку SMM, тем самым расширяя спектр возможных применений этих соединений.

**Цель данной работы** — исследование роли координационной геометрии ионов металлов (3+) на процессы магнитной релаксации в монокристаллах солевых и нейтральных редкоземельных  $\beta$ -кетонатов и полимерных композитов на их основе.

Для выполнения этой цели были поставлены следующие задачи:

1. Синтез комплексных солей гексафторацетилацетонатов редкоземельных металлов (3+) с анионом  $[Ln(C_5H_2F_6O_2)_4]^-$  (Ln = Dy, Ho, Er) и объемными органическими

- катионами ряда 4,4'-дипиридиния и 1-[(1',3',3'-триметилспиро[2H- 1-бензопиран-2,2'-индолин]-8-ил)метил]пиридиния, биядерных нейтральных ацетилацетонатов редкоземельных металлов (3+) с со-лигандом пиридин-N-оксидом, включая разработку методик получения монокристаллов этих соединений.
- 2. Экспериментальное исследование всех синтезированных солевых и нейтральных редкоземельных  $\beta$ -дикетонатов методами рентгеноструктурного анализа, УФ-; ИК-спектроскопии, элементного анализа и магнитометрии.
- 3. Количественное определение параметров магнитного обмена в монокристаллах синтезированных солевых и нейтральных редкоземельных  $\beta$ -дикетонатов; характеристика их магнитного поведения; изучение роли координационной геометрии ионов металлов (3+) в процессах магнитной релаксации; выявление корреляций между строением синтезированных соединений и величинами параметров обменных взаимодействий.
- 4. Разработка методики синтеза и исследование свойств полимерных композитов, содержащих комплексы редкоземельных металлов (3+) со свойствами медленной магнитной релаксации.

# Научная новизна

- Впервые синтезированы и структурно охарактеризованы **5** новых комплексных солей гексафторацетилацетонатов 4-f металлов с объемными органическими катионами ряда **4**,4'-дипиридиния и фотохромным 1-[(1',3',3'-триметилспиро[2H- 1-бензопиран-2,2'-индолин]-8-ил)метил]пиридинием, а также **1** нейтральный комплекс ацетилацетоната Dy (3+) с солигандом пиридин-N-оксидом.
- Впервые проведены статические и динамические исследования магнитных свойств всех синтезированных соединений.
- Впервые показано, что объемные органические катионы ряда 4,4'-дипиридиния могут использоваться для настройки координационной геометрии и магнитной динамики в комплексных солях гексафторацетилацетонатов 4-f металлов.
- Впервые обнаружено взаимное влияние фотохромной и магнитной подрешеток в монокристаллах соли гексафторацетилацетоната Er (3+) со спироциклическим катионом и обнаружено появление фотохромных свойств этой комплексной соли в кристаллическом состоянии.
- В нейтральном биядерном комплексе ацетилацетоната Dy (3+) с со-лигандом пиридин-N-оксидом на основании экспериментальных исследований магнитных свойств и *ab initio* расчетов впервые обнаружена медленная магнитная релаксация в нулевом поле.

– Разработан новый подход к созданию полимерных пленок на основе нейтральных биядерных комплексов ацетилацетонатов редкоземельных металлов (3+) с пиридин-Nоксидом, демонстрирующих свойства медленной магнитной релаксации.

# Теоретическая и практическая значимость работы

Результаты, полученные в настоящей работе, позволяют расширить понимание влияния совокупности факторов (координационная геометрия полиэдра и природа Ln (3+), электростатические эффекты) в серии новых солей гексафторацетилацетонатов 4-f металлов с объемными органическими катионами, а также нейтральном комплексе ацетилацетоната Dy (3+) с со-лигандом — пиридин-N-оксидом, на анизотропию 4f-электронной плотности ионов Ln (3+), и как следствие, их магнитное поведение и величины энергетического барьера перемагничивания, времена и механизмы релаксации и могут быть полезны научным группам, работающим в области дизайна новых редкоземельных SMM и материалов на их основе.

Применение принципа двухкомпонентного подхода, с помощью которого в работе было получено первое соединение - соль гексафторацетилацетоната Er(3+) с анионом  $[Ln(C_5H_2F_6O_2)_4]^-$  и 1-[(1',3',3'-триметилспиро[2H- 1-бензопиран-2,2'-индолин]-8-ил)метил]пиридинием, демонстрирующее фотохромные свойства в кристаллическом состоянии, показало, что можно расширить сферу возможных приложений этих солей: получать новые фотомагнитные материалы, используя обратимые и эффективные фотохромные свойства таких систем.

Предложенный в работе способ синтеза композита поливинилпироллидона с нейтральным биядерным комплексом ацетилацетоната Dy (3+) с пиридин-N-оксидом открывает новый эффективный путь получения полимерных материалов как новых магнитных сред для устройств на основе молекулярных магнитов, магнитокалорического охлаждения, спинтроники и сенсоров для применения в квантовых вычислениях.

### Методология и методы исследования

Для исследования структуры и свойств синтезированных соединений в работе были использованы рентгеноструктурный анализ, порошковая дифракция, магнитометрия, ИКспектроскопия, элементный анализ, спектрофотометрия. Расчёты координационного окружения были проведены при помощи Shape [1, 2]. Исследования полимерных композитов были охарактеризованы при помощи малоугловой рентгеновской дифракции, ИК-спектроскопии, магнитометрии.

Анализ элементов C, H и O выполнен в АЦКП ФИЦ ПХФ и MX PAH на CHNS/O элементном анализаторе "VarioMicrocube".

ИК спектры записывали на Фурье-спектрометре (Bruker ALPHA) в диапазоне частот 400-4000 см-1 в режиме НПВО при комнатной температуре.

Рентгенодифракционный эксперименты проводили на монокристальном дифрактометре Agilent XCalibur с детектором EOS, при температуре 100 К. Структура соединений расшифрована прямым методом. Позиции и температурные параметры неводородных атомов уточнены в изотропном, а затем в анизотропном приближении полноматричным методом наименьших квадратов (МНК). Позиции атомов водорода рассчитаны и уточнены в схеме наездника. Все расчеты выполнены с использованием комплекса программ SHELXTL [2].

Исследование однородности распределения МММ в полимерной матрице выполнено методом безапертурной сканирующей ближнепольной ИК-микроскопии (neaSNOM, neaspec, Германия) в режиме псевдогетеродинирования. В этом методе металлизированный зонд кантилевера атомно-силового микроскопа (АСМ) является наноантенной, позволяющей регистрировать колебания наводимых в образце диполей, получая помимо изображения рельефа поверхности картину распределения поглощения возбуждающего лазерного ИК-излучения с пространственным разрешением, сравнимым с радиусом закругления используемого зонда (VIT\_P/Pt (HT-MДТ) ~ 25 нм). В качестве возбуждающего лазера был использован перестраиваемый квантово-каскадный ИК лазер МІRcat (900-1350; 1500-1970 см<sup>-1</sup>) (Daylight Solution, США). Мощность возбуждающего сигнала не превышала 2 мВт. Полосы ИК-поглощения для сканирования были выбраны таким образом, чтобы избежать их пересечения. Сканирование одного и того же участка образца (2х2 мкм) с разрешением 200х200 пикселей было выполнено на полосах 1651 см<sup>-1</sup> – соответствующей РVР матрице и 1013 см<sup>-1</sup> – соответствующей МММ.

Магнитные свойства комплексов на постоянном и переменном токе анализировали с использованием вибрационного магнитометра Cryogen Free Measurement System (CFMS, Cryogenic Ltd., Лондон, Великобритания). Перед измерениями образец смачивался маслом Fomblin YR 1800 и помещался в полиэтиленовый пакет. Магнитный момент образца был скорректирован с учетом диамагнитного вклада масла и держателя образца. Полученное значение магнитного момента было пересчитано в молярную магнитную восприимчивость, значение которой, в свою очередь, было скорректировано с учетом диамагнитной составляющей восприимчивости по правилу Паскаля.

Фотохимические исследования в кристаллическом состоянии проводились на тонкослойных образцах, приготовленных путем растирания поликристаллического порошка в минеральном масле. Спектры поглощения регистрировались на спектрометре Specord 250 plus. Положение образца в приборе было строго фиксировано и сохранялось

неизменным при каждом измерении для исключения изменений базовой линии. Облучение осуществлялось: 1) ртутной разрядной лампой низкого давления Philips PL-S 9W, внутренняя стенка которой покрыта люминофором, излучающим УФ-свет в диапазоне 340-390 нм с максимумом при 355 нм; 2) светодиодом 530 нм мощностью 60 мВт и диаметром светового пятна 1,5 см. Все исследования проводились при температуре 293 (1) К.

### Положения, выносимые на защиту

- Разработка методов синтеза новых солевых и нейтральных редкоземельных  $\beta$ дикетонатов в виде монокристаллических однофазных образцов, пригодных для
  дальнейшего изучения их характеристик в твердой фазе;
- Результаты экспериментального исследования строения и магнитного поведения новых комплексов. Выявление наличия медленной магнитной релаксации (свойств характерных для SMMs) синтезированными комплексами.
- Разработка метода синтеза полимерных композитов, содержащих синтезированные
   SMMs.
- Результаты экспериментального исследования свойств полимерных композитов, включая исследование их магнитного поведения.

# Личный вклад автора

Соискателем совместно с научным руководителем были определены цели и задачи диссертационного исследования. Соискателем лично проведен синтез всех соединений и материалов, представленных в данном диссертационном исследовании, изучены их физико-химические свойства в твердой фазе, подготовлены к печати публикации, написан текст настоящего диссертационного исследования, сформулированы положения, выносимые на защиту и выводы. Экспериментальные результаты (элементный анализ, РСА, безапертурной сканирующей ближнепольной спктроскопии, АСМ и магнетометрии получены в Аналитическом центре коллективного пользования ФИЦ ПХФ и МХ РАН. Анализ и интерпретация полученных данных соискателем были выполнены при содействии специалистов подразделений отдела Строения вещества ФИЦ ПХФ и МХ РАН - к.ф.-м.н. Г.В. Шилова, к.х.н. Д.В. Корчагина, к.ф.-м.н. М.В. Жидкова, к.ф.-м.н. А.И. Дмитриева.

### Степень достоверности и апробация результатов

Достоверность полученных результатов обеспечена широким рядом проведённых физико-химических исследований веществ и материалов, анализом полученных результатов с привлечением надежных литературных данных.

**Публикации.** Материалы диссертационной работы были изложены в **4** статьях в рецензируемых научных журналах и представлены в виде устных и стендовых докладов на **9** российских и международных конференциях.

Во «Введении» (Глава 1) обоснованы актуальность, научная новизна и практическая значимость исследования, представлены цель и основные задачи работы. Описаны применяемые методы, сформулированы положения, выносимые на защиту и данные об апробации результатов.

В «Обзоре литературы» (Глава 2) изложены основные принципы работы мономолекулярного магнита; краткая история исследования SMMs, рассмотрены подходы к современному дизайну мономолекулярных магнитов и полимерных материалов на их основе, в том числе модулируемых внешними стимулами; собраны и проанализированы сведения о влиянии электронного строения 3d и 4f металлов и природы координирующих лигандов на магнитные характеристики SMMs. Особое внимание уделено изучению факторов, влияющих на обменные взаимодействия в SMMs, в том числе, изученных ранее В-дикетонатных комплексов редкоземельных металлов. Показано, представляет интерес использование органических моно- и поликатионов как объемных противоионов, способных «собирать» ансамбли SIM-анионов в солевых  $\beta$ -дикетонатах редкоземельных металлов (3+), а также - исследование взаимовлияния геометрии катионной и анионных подрешеток в таких кристаллах. В главе представлен также анализ литературных данных, посвященных нейтральным полиядерным SMMs, в которых магнитное обменное взаимодействие молекул положительно влияет на подавление QTM и, следовательно, продлевает время релаксации в нулевом поле. По сравнению с моноядерными SMM число таких медленно релаксирующих полиядерных комплексов относительно невелико, и это открывает перспективы фундаментального исследования закономерностей "структурамагнитные свойства". Кроме того, практические приложения для использования SIMs в высокоплотных магнитных хранилищах, датчиках, квантовых вычислениях и устройствах спинтроники, требуют перехода от кристаллов и искусственно организованным материалам. Поэтому применение как традиционных подходов к росту тонких пленок (Ленгмюра-Блоджетт, химический подход, погружение и сушка, лазерное испарение), шаблонизации (микроконтактная печать, осаждение на шаблонную поверхность, формование однородных пленок), так и новые методы, специально разработанные для SIMs (литографически контролируемое смачивание и расслоение) являются ключевыми факторами для разработки будущих приложений SIMs.

В «Экспериментальной части» (Глава 3) описаны используемые реактивы, способы их подготовки, методики синтеза образцов и характеристики полученных соединений. Описано оборудование, применяемое для измерения физических свойств. Состав и структура соединений и материалов на их основе установлены при помощи

рентгеноструктурного анализа, в том числе – в малых углах дифракции, УФ-; ИКспектроскопии, АСМ, элементного анализа и магнитометрии.

В «Обсуждении результатов» (Глава 4) приводятся основные результаты.

# Структура диссертации

Текст диссертационной работы состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов и списка литературы и двух приложений. Работа изложена на 129 страницах машинописного текста и включает 79 рисунков, 2 схемы и 10 таблиц. Список литературы включает 198 наименований.

# ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

# Синтез комплексов редкоземельных металлов (3+)

В работе синтезировано шесть новых комплексов редкоземельных металлов (3+): 5 комплексных солей гексафторацетилацетонатов 4-f металлов с объемными органическими катионами ряда 4,4'-дипиридиния и фотохромным 1-[(1',3',3'-триметилспиро[2H- 1-бензопиран-2,2'-индолин]-8-ил)метил]пиридинием (Схема 1) и 1 нейтральный биядерный комплекс ацетилацетоната Dy (3+) с со-лигандом – пиридин-N-оксидом (Схема 2). Соли 4-8 получены реакциями метатезиса из соответствующих прекурсоров – солей 1-3 (Таблица 1), которые были синтезированы по методике [4]. Для синтеза комплекса 8 в качестве прекурсора использовали комплекс 7, синтезированный по методике [5].

$$Q^{+}X^{-} + Na^{+}[Ln(CH(COCF_{3})_{2})_{4}]^{-}$$
  $Q^{+}[Ln(CH(COCF_{3})_{2})_{4}]^{-}$   $Q^{+}=H_{3}C^{-}N^{+}$   $Q^{+}=H_{$ 

Схема 1. Схема синтеза солей 4-8 с органическими моно- и дикатионами.

$$L + Dy(C_5H_7O_2)_3 \cdot 2H_2O \xrightarrow{CHCl_3 + C_7H_{16}} [Dy(C_5H_7O_2)_3L]_2 \cdot 2CHCl_3$$

$$L = \sqrt[N^+ - O^-]{N^+ - O^-}$$

Схема 2. Схема синтеза нейтрального биядерного комплекса 10.

Таблица 1. Формулы комплексов редкоземельных металлов (3+) 1-10.

| № комплекса | Формулы комплексов 1-10                                                                  |  |  |  |
|-------------|------------------------------------------------------------------------------------------|--|--|--|
| 1           | $[\mathrm{Er}(\mathrm{C}_5\mathrm{H}_2\mathrm{F}_6\mathrm{O}_2)_4]\mathrm{Na}$           |  |  |  |
| 2           | [Ho(C <sub>5</sub> H <sub>2</sub> F <sub>6</sub> O <sub>2</sub> ) <sub>4</sub> ]Na       |  |  |  |
| 3           | [Dy(C5H2F6O2)4]Na                                                                        |  |  |  |
| 4           | $[Dy(C_5H_2F_6O_2)_4]_2(C_{12}H_{14}N_{22})$                                             |  |  |  |
|             | Катион: 1,1'-диметил-4,4'-бипиридиний (C <sub>12</sub> H <sub>14</sub> N <sub>22</sub> ) |  |  |  |
| 5           | $[Er(C_5H_2F_6O_2)_4]_2(C_{14}H_{18}N_{22})$                                             |  |  |  |
|             | Катион: 1,1'-диэтил-4,4'-бипиридиний (C <sub>14</sub> H <sub>18</sub> N <sub>22</sub> )  |  |  |  |
| 6           | $[Ho(C_5H_2F_6O_2)_4]_2(C_{14}H_{18}N_{22})$                                             |  |  |  |
|             | Катион: 1,1'-диэтил-4,4'-бипиридиний (C <sub>14</sub> H <sub>18</sub> N <sub>22</sub> )  |  |  |  |
| 7           | $[Dy(C_5H_2F_6O_2)_4]_2(C_{14}H_{18}N_{22})$                                             |  |  |  |
|             | Катион: 1,1'-диэтил-4,4'-бипиридиний (C <sub>14</sub> H <sub>18</sub> N <sub>22</sub> )  |  |  |  |
| 8           | $[Er(hfac)_4](C_{25}H_{25}N_2O)_2$                                                       |  |  |  |
|             | Катион: 1-[(1',3',3'- триметилспиро [2і/-1-бензопиран-2,2'-индолин]-8-                   |  |  |  |
|             | ил)метил] пиридиний (С25Н25N2O)                                                          |  |  |  |
| 9           | $Dy(C_5H_7O_2)_3\cdot(H_2O)_2$                                                           |  |  |  |
| 10          | $[Dy(C_5H_7O_2)_3(C_5H_5NO)]_2 \cdot 2CHCl_3$                                            |  |  |  |
|             | Лиганд: пиридин-N-оксид (C <sub>5</sub> H <sub>5</sub> NO)                               |  |  |  |

# Рентгеноструктурный анализ комплексов 1-10

Структура комплекса **1** была ранее описана в [4]. Структуры синтезированных исходных комплексов **2**, **3** изоструктурны соединению **1**. Соединение **4** кристаллизуется в ромбической системе, кристаллическая структура расшифрована и уточнена в нецентросимметричной пространственной группе  $Pca2_1$ . На рис. 1 представлена молекулярная структура комплекса **4**. Независимая часть кристаллической структуры включает два аниона  $[Dy(hfac)_4]^-$  и двузарядный катион 1,1'-диметил-4,4'-бипиридиний. Анионы представляют собой моноядерные комплексы. Каждый ион Dy формирует восьмикоординационную структуру, в которой атомы металла координируют по четыре hfac лиганда. Согласно анализу Shape, неэквивалентные ионы Dy восьмикоординированы атомами кислорода hfac-лигандов и обладают геометрией искаженной двунаправленной тригональной призмы  $(C_{2\nu})$  и треугольного додекаэдра  $(D_{2d})$  для Dy1 и Dy2, соответственно (рис. 1 (б, в)).

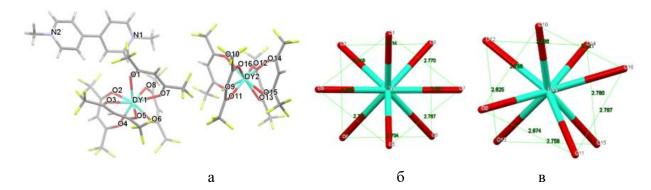



Рисунок 1. Молекулярная структура комплекса **4**. Атомы углерода, фтора и водорода не обозначены (а). Координационное окружение ионов Dy (б) и Dy2 (в) в **4**. Штриховыми линиями соеденены атомы в основании пирамид. Значения расстояний в Å.

Соединение **5** кристаллизуется в моноклинной пространственной группе C2/c. Независимая часть суммарно содержит два аниона  $[Er^{3+}(hfac)_4]^-$  и один катион  $[(C_{14} H_{18}N_2)]^{2+}$ . Атом Er1 находится в общей позиции. Атомы Er2 и Er3 находятся в частных позициях на осях второго порядка с кратностью позиции соответствующих анионов  $[Er2(hfac)_4]^-$  и  $[Er3(hfac)_4]^-$  ½. Общий вид трех комплексных анионов и одного катиона представлен на рис. 2 (а). Соединение **6** кристаллизуется в орторомбической пространственной группе  $P2_12_12_1$ , а соединение **7** в — моноклинной пространственной группе  $P2_1/c$ . Независимая часть **6** и **7** содержит два аниона  $[Ln^{3+}(hfac)_4]^-$  (Ln = Ho, Dy) и один дикатион  $[(C_{14} H_{18}N_2)]^{2+}$ . Общий вид независимой части кристаллических структур на примере соединения **5** представлен на рис. 2 (б).

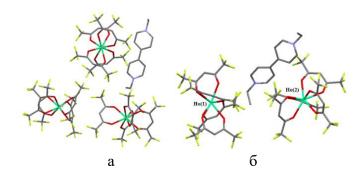



Рисунок 2. Общий вид трех комплексных анионов  $[Er^{3+}(hfac)_4]^-$  и одного катиона  $(C_{14}H_{18}N_2)^{2+}$  в **5** (без атомов водорода для ясности) (а). Независимая часть кристаллической структуры **6** (без атомов водорода для ясности) (б).

В соединениях **1-3** анионы  $[Ln^{3+}(hfac)_4]^-$  (Ln = Er, Ho, Dy) представляют собой моноядерные комплексы, в структуре которых ионы  $Ln^{3+}$  восьмикоординированы атомами кислорода hfac-лиганда и имеют геометрию искаженной квадратной антипризмы (псевдо- $D_{4d}$ ) для всех металлов по данным анализа Shape. В соединениях **5-7** являются биядерными комплексами. Оба аниона  $[Ln^{3+}(hfac)_4]^-$  (Ln = Er, Ho, Dy) в **5-7** представляют собой

моноядерные комплексы, в структуре которых ионы Ln восьмикоординированы атомами кислорода hfac-лиганда и имеют геометрию искаженной квадратной антипризмы (псевдо- $D_{4d}$ ) в случае Ln = Er1-3, Ho2, и искаженного додекаэдра с псевдо- $D_{2d}$ -симметрией в случае Ln = Ho1, Dy1,2 по данным анализа Shape.

Из сравнительного Shape анализа следует, что полиэдры, образованные анионом эрбия (3+), сохраняют вид квадратной антипризмы, у комплекса гольмия образуется два вида полиэдров — один сохраняет свою геометрию квадратной антипризмы, второй - меняет геометрию на треугольный додекаэдр, а в случае диспрозия, оба полиэдра приобретают вид треугольного додекаэдра.

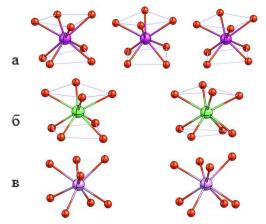



Рисунок 3. Координационное окружение ионов Ln в **5-7** (а-в). Линии соединяют атомы кислорода в основаниях квадратных антипризм.

Ближайшее координационное окружение ионов Ln<sup>3+</sup> (Ln = Er, Ho, Dy) в **5- 7** показано на рисунке 3 (а-в), соответственно. Геометрия расположения атомов кислорода вокруг ионов металлов несколько отличается друг от друга.

Соединение 8 кристаллизуется в моноклинной системе. Кристаллическая структура уточнена в пространственной группе P21/c. Ассиметричная часть включает два катиона спиропирана в закрытой форме и два комплексных

аниона Ег (3+). На рисунке 4 (а) представлена молекулярная структура 8.

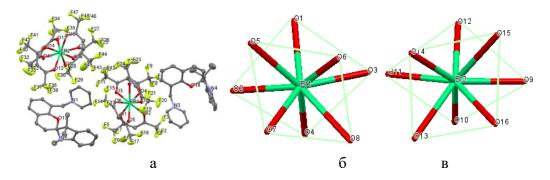



Рисунок 4. Молекулярная структура **8**. Атома представлены в виде эллипсоидов 50% вероятности. Атомы водорода не показаны, а атомы углерода не обозначены. (а). Геометрия полиэдров  $[Er(1)O_8]$  (б) и  $[Er(2)O_8]$  (в) в комплексе **8**.

Ближайшее окружение атомов Er в комплексе **8**, как и в комплексе **1**, составляют восемь атомов кислорода, принадлежащих четырем гексафторацетилацетонатным лигандам CH(COCF<sub>3</sub>)<sub>2</sub>, координирующим его хелатным способом. По данным,

полученным из анализа по программе Shape, при переходе от натриевой соли **1** к соли со спироциклическим катионом **8** наблюдается изменение геометрии координационного полиэдра [ErO<sub>8</sub>] от квадратной антипризмы до додекаэдра с треугольными гранями (рис. 4 (б, в)), что должно отразиться на магнитных свойствах этих солей.

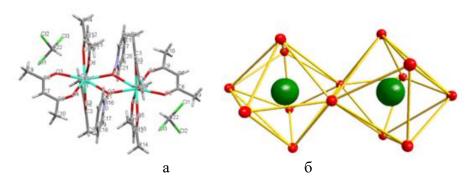



Рисунок 5. Молекулярная структура комплекса **10**. Атомы водорода не показаны для ясности, атомы углерода не обозначены (а). Локальное координационное окружение ионов Dy (3+) в **10** (б).

Структура комплекса 9 была ранее описана в [5]. Комплекс 10 кристаллизуется в моноклинной системе, пространственная группа  $P2_{1}/c$ . Комплекс **10** является электронейтральным биядерным димером (рис. 5 (а)), в котором атомы кислорода двух молекул PyNO выступают мостиками между двумя ионами Dy. Комплекс 10 является центросимметричным, ассиметричная часть элементарной ячейки включает половину комплекса 10 – один атом Dy (3+), три ацетилацетонатных лиганда, одну молекулу PyNO и сольватную молекулу хлороформа. Окружение каждого иона Dy составляют восемь атомов кислорода (рис. 5 (б)). Каждый гексафторацетилацетонатный лиганд обеспечивает два донорных атома О с диапазоном расстояний Dy-O 2,312(4)-2,360(5) Å. Два других координационных места иона Dy заняты двумя атомами О из лигандов РуNО с расстояниями Dy-O 2,425(5) и 2,514(5) Å. Согласно анализу по программе Shape, координационный полиэдр иона Dy является треугольный додекаэдр ( $D_{2d}$ ). В этом заключается существенное отличие комплекса 10 от двух ранее исследованных биядерных комплексов  $[Dy(hfac)_3(PyNO)_2]_2$ , где PyNO = N-оксид 3-метилсульфанилпиридина и 4метилкарбодитиоат-пиридин N-оксид, обладающих схожим строением [6]. В обоих hfacкомплексах локальное координационное окружение ионов Dy представляет собой квадратную антипризму.

# Магнитные свойства комплексов 1, 4-8, 10

Для комплекса **4** температурная зависимость магнитной восприимчивости в постоянном магнитном поле представлена на рис. 6 (а). Произведение магнитной восприимчивости на температуру заметно ниже значения для двух ионов диспрозия, что

может быть объяснено опустошением возбужденных подуровней. На рисунке 6 (б) представлены частотные зависимости магнитной восприимчивости образца в различных постоянных магнитных полях с целью подавления квантового туннелирования в нулевом постоянном поле.

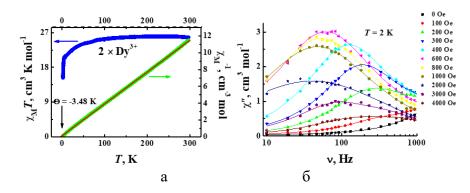



Рисунок 6. Температурные зависимости произведения молярной магнитной восприимчивости на температуру  $\chi T$  (синие символы) и обратной молярной магнитной восприимчивости  $\chi^{-1}$  комплекса **4**. Красной линией показана экстраполяция высокотемпературной части зависимости до значения  $\chi^{-1} = 0$  (а). Частотные зависимости мнимой  $\chi(v)''$  части магнитной восприимчивости при температуре T = 2 К в различных постоянных магнитных полях. Сплошными линиями показаны аппроксимации.(б).

На рис. 7 представлены частотные зависимости действительной и мнимой частей магнитной восприимчивости в постоянном поле 600 Э для **4**, так как в нём наблюдался наилучший сигнал, свидетельствующий о медленной магнитной релаксации. Кривые  $\chi(v)'$  и  $\chi(v)''$  при каждой температуре и постоянном магнитном поле были аппроксимированы моделью Дебая. В результате аппроксимации была получена зависимость времени магнитной релаксации от температуры при H = 600 Э. Эта зависимость позволяет сделать вывод, что магнитная релаксация в данном случае целиком определяется механизмом Орбаха. Аппроксимация этой зависимости уравнением Аррениуса позволила определить высоту энергетического барьера и время релаксации.

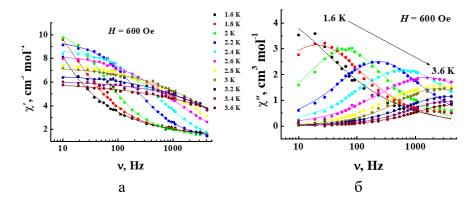



Рисунок 7. Частотные зависимости действительной  $\chi(v)'$  и мнимой  $\chi(v)''$  частей магнитной восприимчивости в постоянном магнитном поле напряженностью H=600 Э при различных температурах комплекса **4**. Сплошными линиями показаны аппроксимации.

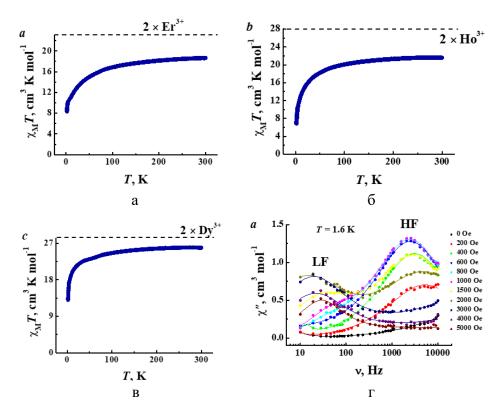



Рисунок 8. Температурные зависимости произведения  $\chi T$  комплексов 5 (а), 6 (б), 7 (в). Пунктирными горизонтальными линиями показаны расчетные значения для пары невзаимодействующих парамагнитных центров. Частотные зависимости мнимой части  $\chi''$  магнитной восприимчивости в постоянном магнитном поле различной напряженности при температуре T=1.6 К для комплекса 5 (г).

В комплексах 5-7 произведение  $\chi T$  для всех трёх комплексов заметно ниже расчётных значений для двух ионов соответствующего металла (рис. 8 (а-в)). Для комплекса 5 нулевом магнитном поле медленной релаксации не наблюдается, вероятно, за счет процессов быстрого квантового туннелирования (рис. 8 (г)). Приложение магнитного поля приводит к подавлению последнего и заметной медленной релаксации в комплексе. Оптимальным магнитным полем является поле напряженностью 800 Ое. Частотные зависимости действительной и мнимой частей магнитной восприимчивости в этом постоянном поле для 5 представлены на рисунке 8 (г).

Кривые  $\chi(v)'$  и  $\chi(v)''$  при каждой температуре и постоянном магнитном поле были аппроксимированы моделью Дебая. В результате аппроксимации была получена зависимость времени магнитной релаксации от температуры при H=800 Э. Спрямление зависимости  $\tau(T)$  в этих координатах говорит о том, что доминирующим релаксационным механизмом в комплексе **5** является Орбаховский процесс. Аппроксимация этой зависимости уравнением Аррениуса позволила определить высоту энергетического барьера и время релаксации:  $U_{eff}=4,3$  К,  $\tau_0=4,7\times10^{-6}$  с.

В комплексах **6** и **7** характерные частоты индуцируемой магнитным полем медленной релаксации лежит за окном доступных частот до 10 kHz (рис. 9 (а, б)).

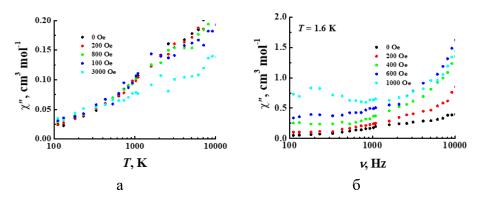



Рисунок 9. Частотные зависимости мнимой части  $\chi''$  магнитной восприимчивости в постоянном магнитном поле различной напряженности при температуре T=1.6 К для комплексов 6 (a) и 7 (б).

Магнитное поведение комплексов **1** и **8** было исследовано в сравнении в постоянном магнитном поле 5000 Оэ в диапазоне температур 2-300 К. Соответствующие температурные зависимости магнитной восприимчивости представлены на рис. 10 (а). Для обоих соединений зависимости  $\chi T(T)$  выглядят типичными для комплексов Er (3+) с небольшим отклонением. Были выполнены также исследования магнитного поведения **1** и **8** в переменном магнитном поле и при постоянном магнитном поле от 0 до 5000 Оэ. Отсутствие внешнего постоянного магнитного поля привело к пренебрежимо малым значениям  $\chi''$  для обоих комплексов на всех частотах, возможно, из-за подавляющего влияния квантового туннелирования. Для натриевой соли (**1**) под действием постоянного магнитного поля на частотных зависимостях  $\chi''(v)$  появились значительные внефазные сигналы (рис. 10 (б)).

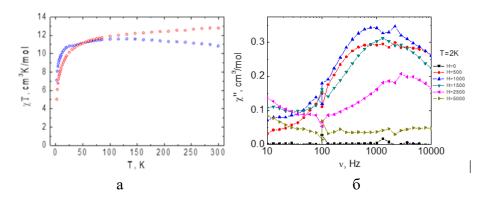



Рисунок 10. Зависимость магнитной восприимчивости от T для комплексов **1** (синий) и **8** (красный) в постоянном магнитном поле 5000 Оэ (а). Частотные зависимости мнимой компоненты AC-магнитной восприимчивости для комплекса **1** магнитном поле от 0 до 5000 Ое при 2K (б).

Приложение магнитного поля в случае комплекса **8** привело к появлению ненулевых значений  $\chi''$  с максимумами за пределами частотного окна магнитометра, что не позволило оценить параметры релаксации для этого комплекса (рис. 11 (a)).

Для натриевой соли (1) были получены зависимости  $\chi''(v)$  в оптимальном постоянном поле 500 Оэ при температуре 2-3 К. Эти данные были аппроксимированы обобщенной моделью Дебая, дающей в  $\tau(1/T)$  температурные зависимости времени релаксации:  $U_{eff} = 23.7$  К,  $\tau_0 = 5.8 \times 10^{-9}$  с. Следует отметить, что магнитная релаксация для для натриевой соли 1 включает в себя более одного релаксационного процесса (рис. 11 (б)). Однако анализ и оценка параметров релаксации для второго процесса представляется достаточно сложной задачей, поскольку соответствующие пики находятся на краю частотного окна используемого прибора. Зависимость для натриевой соли 1 успешно описывается механизмом релаксации Орбаха.

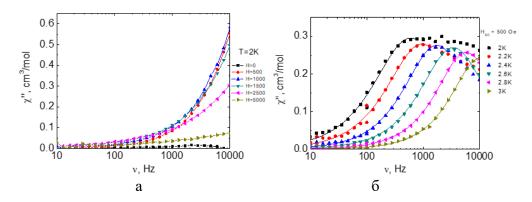



Рисунок 11. Частотные зависимости мнимой компоненты АС-магнитной восприимчивости для комплекса **8** в магнитном поле от 0 до 5000 Ое при 2К (а) и комплекса **1** в диапазоне 2-3 К, полученные при оптимальном постоянном поле 500 Ое (б).

Таким образом, анализ экспериментальных данных строения и магнитных свойств изученных солей гексафторацетилацетонатов Ln (3+) с объёмными катионами позволяет заключить, что их магнитные характеристики существенно зависят от координационного окружения Ln (3+), которое формируется благодаря влиянию природы и размера катиона, поэтому поиск объемных органических катионов, формирующих геометрию LnO<sub>8</sub>, приближённую к квадратной антипризме, является перспективной стратегией дизайна новых солей SIM с гексафторацетилацетонатами.

Кристаллографический анализ показал, что в соли 8 - со спироциклическим катионом, благодаря лабильности атомов фтора C-F3 групп создаются благоприятные условия для фотохимических превращений. В этой связи были исследованы фотохимические свойства поликристаллов комплекса 8. В кристаллах 8 фотохромный спиропирановый катион находится в закрытой ( $SP^+$ ) бесцветной форме. Соответственно, на спектрах поглощение в видимой области незначительно (график слева). При длительном

хранении в темноте кристаллы самопроизвольно окрашиваются, и на спектрах появляется полоса в видимой области, соответствующая поглощению открытой  $(MC^+)$  формы (рис. 12 (а), врезка). Такое поведение отличается от исходного бромида спиропирана, который не проявляет фотохромных свойств в кристаллическом состоянии.

Равновесное состояние между открытой и закрытой формами комплекса **8** достигается  $\sim$  за 45 дней при комнатной температуре. Кинетика роста поглощения при 535 нм описывается двух-экспоненциальной зависимостью, константы скорости  $k_1 = 6.8 \cdot 10^{-5}$  и  $k_2 = 1.8 \cdot 10^{-6}$  с<sup>-1</sup>. Открытую форму можно обесцветить видимым светом. Еще одной особенностью фотохимического поведения комплекса **8** является низкая чувствительность к УФ-свету. При облучении интенсивность полосы открытой формы возрастает незначительно. Вероятно, это обусловлено перекрыванием поглощения катиона спиропирана  $SP^+$  и магнитного аниона [Er(hfac)<sub>4</sub>] в УФ диапазоне (рис. 12 (б)).

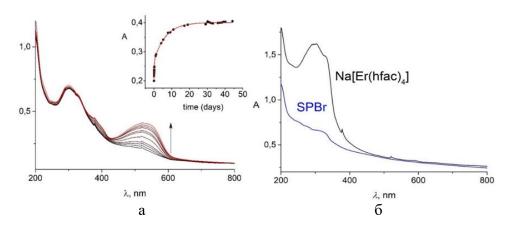



Рисунок 12. Изменение поглощения кристаллов **8** во времени при хранении в темноте при комнатной температуре 293(1) К. Врезка: кинетика нарастания оптической плотности открытой формы; точки - поглощение при 535 нм, сплошная линия - аппроксимация биэкспоненциальной зависимостью (а). Поглощение в кристаллах **8** SPBr ( $C_{25}H_{25}N_2OBr$ ) (синий) и комплекса **1** (черный) (б).

Эти результаты демонстрируют редкое взаимозависимое действие магнитной и фотохромной подрешетками в кристалле, что открывает путь для получения новых фотомагнитных материалов, при использовании обратимых и эффективных фотохромных свойств таких систем.

Для нейтрального биядерного ацетилацетонатного комплекса Dy (3+) с пиридин-N-оксидом **10** намагниченность постоянно увеличивается с увеличением приложенного постоянного поля и достигает насыщения при 5 Тл (рис. 13). Значения намагниченности (10,09 Нβ) ниже теоретического значения насыщения (20 Нβ), ожидаемого для двух изолированных ионов Dy (3+), что можно объяснить эффектами расщепления кристаллического поля и магнитной анизотропии.

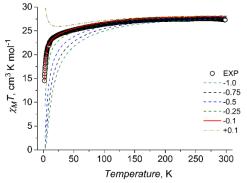



Рисунок 13. Магнитная восприимчивость **10** при постоянном токе. Красная линия — смоделированная зависимость.

Измерения магнитной восприимчивости на частотно-зависимом переменном токе для комплекса 10 проводились В диапазоне температур 10-21 К при нулевом постоянном поле (рис. 14 (а, б)). Положение максимума при 10-21 К температурах не остаются постоянными (рис. 14 (а)), что указывает на отсутствие процесса квантового туннелирования намагниченности процесса в этом диапазоне температур. Напротив, при этих

температурах наблюдается сдвиг максимума в сторону более высоких частот с повышением температуры, причём максимум смещается за пределы диапазона магнитометра при  $T>21\ \mathrm{K}.$ 

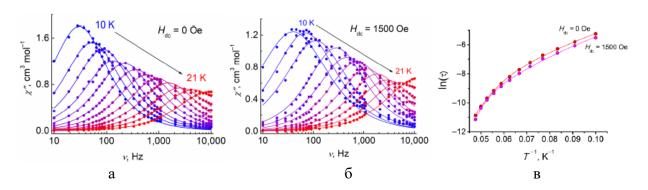



Рисунок 14. Зависимость мнимой части магнитной восприимчивости 10 от частоты: a) - в нулевом поле и б) - в поле 1300 Э. Зависимость времени релаксации  $\tau$  от обратной температуры для комплекса 10 при нулевом и постоянном поле 1500 Э (в).

В приложенном постоянном поле 1500 Э частотные зависимости синфазных и противофазных сигналов чувствительности к переменному току (рис. 14 (б)) демонстрируют сходное поведение при релаксации. Положение максимума остается практически неизменным по сравнению с нулевым полем постоянного тока.

Таблица 2 — Наиболее подходящие параметры для времени магнитной релаксации для комплекса **10**.

| $H_{dc}$ , Э                     | 0                    | 1300                  |
|----------------------------------|----------------------|-----------------------|
| τ <sub>0</sub> , c               | $3,15\cdot 10^{-11}$ | $1,24 \cdot 10^{-12}$ |
| $U_{e\!f\!f}$ , см $^{-1}$       | 287                  | 338                   |
| $C_{Raman}, c^{-1} \cdot K^{-n}$ | 2,2·10 <sup>-4</sup> | 1,5·10 <sup>-4</sup>  |
| $n_{Raman}$                      | 5,93                 | 6,20                  |

Оказалось, что процесс релаксации независим от поля, и его зависимости в нулевом и прикладном полях практически совпадают (рис. 14 (в)). Оба процесса могут быть аппроксимированы с использованием комбинации Рамановского механизма и Орбаха с близкими параметрами (табл. 2).

Таким образом, наличие в комплексе 10 ацетилацетонатных лигандов и мостиковых пиридин-N-оксидов приводит к изменению координационного окружения ионов Dy (3+) в сторону понижения локальной симметрии. Это существенно не влияет на магнитные свойства при постоянном токе, но проявляется в динамических характеристиках (восприимчивости переменного тока), а именно в увеличении вклада QTM в релаксационные процессы. Разработка синтетических стратегий, основанных на использовании β-дикетонов, которые легко координируют редкоземельные Ln (3+), в сочетании с мостиковыми лигандами другой химической природы, является перспективным направлением для дизайна SMM и получения материалов с интересными характеристиками путем управления параметрами синтеза.

# Полимерный композит на основе комплекса 10

В настоящей работе разработан способ получения полимерного композита комплекса 10. Полимерный композит получен смешением раствора комплекса 10 в количестве 0,05 г в 1,5 мл хлороформа с раствором поливинилпирролидона (Sigma-Aldrich, M.B. = 114,14 г/моль) в количестве 0,05 г в 1,5 мл в хлороформе при T=18°C в инертной атмосфере и нанесения фильтрата этой смеси на стационарную стеклянную подложку, раскручиваемую на спинкоутере (скорость вращения - 100 оборотов в минуту в течении 240 - 500 секунд).

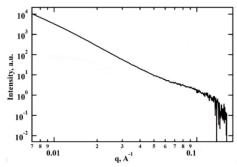



Рисунок 15. Одномерный профиль рассеяния полимерного композита комплекса **10** после вычитания сигнала от полимерной матрицы.

По результатам исследования методом рентгеноструктурного анализа в малых углах дифракции для композитного образца кривая представляет из себя монотонно спадающую зависимость  $I \sim q^{-3.9}$ , что соответствует рассеянию от олонподтоги раствора. Таким образом, установлено, что 10 распределен в матрице поливинилпирролидона равномерно без формирования агрегатов. Полученный профиль рассеяния представлен на рисунке 15.

Кроме того, в работе были исследованы однородности распределения комплекса 10 в матрице поливинилпирролидона. Топографические АСМ: карты композита, карты распределения поливинилпирролидона и комплекса 10 в композите представлены на рисунке 16. Установлено, что полученные композиционные пленки имеют очень гладкую поверхность, параметр среднеквадратичной шероховатости (RMS) составляет ~ 0.5 нм. Результаты картирования демонстрируют высокую однородность распределения

комплекса 10 в полимерной матрице. Полученные сканы демонстрируют высокую однородность распределения 10 в полимерной матрице (рис. 16).

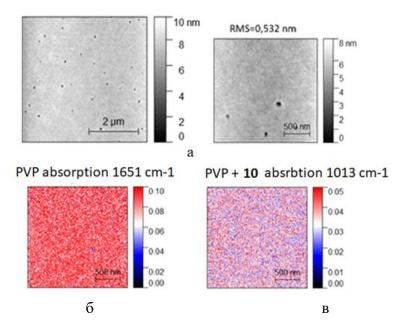



Рисунок 16. Топографические ACM — карты композита (a) и карты распределения поливинилпирролидона (б) и комплекса 10 (в) в композите.

Для исследования динамики перемагничивания полимерного композита были измерены частотные зависимости действительной  $\chi'(v)$  и мнимой  $\chi''(v)$  частей магнитной восприимчивости в различных постоянных магнитных полях H и при различных температурах T.

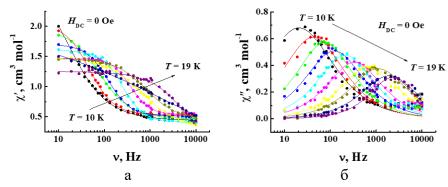



Рисунок 17. Частотные зависимости действительной  $\chi'(v)$  (а) и мнимой  $\chi''(v)$  (б) частей магнитной восприимчивости полимерного композита комплекса **10** в нулевом постоянном магнитном поле при различных температурах.

В образце на зависимости  $\chi''(v)$  в полулогарифмических координатах наблюдается характерный максимум, свидетельствующий о медленной магнитной релаксации. Вначале были выполнены измерения частотных зависимостей действительной  $\chi'(v)$  и мнимой  $\chi''(v)$  частей магнитной восприимчивости образца в диапазоне температур 10-19 К в нулевом постоянном магнитном поле (рис. 17 (a, б)).

Кривые  $\chi'(v)$  и  $\chi''(v)$  аппроксимированы обобщенной функцией Дебая, позволившие получить параметры  $\tau_0$ ,  $U_{\rm eff}$  (таблица 3).

Таблица 3. Релаксационные параметры для комплекса **10** и его полимерного композита, определенные из аппроксимации.

|                     | Комплекс 10           |                       | Комплекс 10 Полиме   |                      | Полимерны | й композит |
|---------------------|-----------------------|-----------------------|----------------------|----------------------|-----------|------------|
| Н <sub>DC</sub> , Э | 0                     | 1500                  | 0                    | 1500                 |           |            |
| τ <sub>0</sub> , c  | 3.2·10 <sup>-11</sup> | 1.2·10 <sup>-12</sup> | 1.4·10 <sup>-8</sup> | 2.5·10 <sup>-9</sup> |           |            |
| $U_{ m eff},$ K     | 287                   | 338                   | 169                  | 198                  |           |            |

В приложенном постоянном магнитном поле частотные зависимости мнимой и действительной составляющих АС восприимчивости демонстрируют аналогичное поведение (рис. 18 (а, б)). Установлено, что зависимость  $ln(\tau)$  от 1/T для процесса релаксации нелинейна, что свидетельствует о наличии рамановских механизмов релаксации, наряду с механизмом Орбаха (рис. 18 (в)).

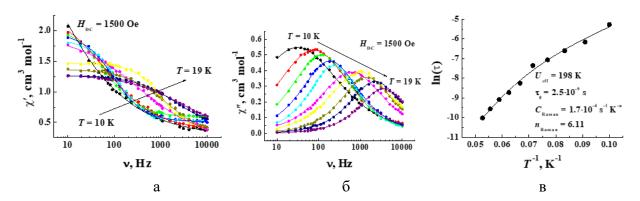



Рисунок 18. Частотные зависимости действительной  $\chi'(v)$  (а) и мнимой  $\chi''(v)$  (б) частей магнитной восприимчивости полимерного композита комплекса **10** в постоянном магнитном поле напряженностью 1500 Э при различных температурах. Сплошными линиями показаны аппроксимации обобщенной моделью Дебая. в) Зависимость  $ln(\tau)$  от обратной температуры  $T^{-1}$  Сплошной линией показана аппроксимация.

Таким образом, обнаружена близость значений основных магнитных характеристик в постоянном магнитном поле для комплекса 10 и его полимерного композита. Это указывает на то, что магнитные свойства комплекса 10 сохраняются при однородном распределении его в полвинилпирролидоне. В переменном магнитном поле свойства 10 и композита заметно различаются: для композита наблюдается снижение эффективного барьера перемагничивания и увеличение времени релаксации.

# выводы

1. Получена серия новых комплексных солей: гексафторацетилацетонатов (hfac) редкоземельных металлов (3+) с анионами  $[Ln(hfac)_4]^-$ , где Ln(3+) = Er, Dy, Ho и

- объемными органическими катионами ряда 4,4'-дипиридиния и фотохромного 1-[(1',3',3'-триметилспиро[2H- 1-бензопиран-2,2'-индолин]-8-ил)метил]пиридиния и установлено влияние размера органического катиона и природы редкоземельного металла на тип и геометрию координационного полиэдра [ $LnO_8$ ].
- 2. Установлено, что для соли Dy (3+) с 1,1'-диметил-4,4'-дипиридинием, характерна структура, в которой два координационных полиэдра [DyO<sub>8</sub>] заметно искажены: один обладает геометрией искаженной двунаправленной тригональной призмы ( $C_2v$ ), другой треугольного додекаэдра ( $D_2d$ ), и наблюдается индуцированная полем медленная релаксация намагниченности, которая описывается механизмом Орбаха. Для солей с Ln = Er, Dy, Ho и 1,1'-диэтил-4,4'-дипиридинием координационные полиэдры для обоих ионов Er (3+) имеют геометрию квадратной антипризмы, для ионов Ho (3+) геометрию квадратной антипризмы и додекаэдра, а для ионов Dy (3+) геометрию додекаэдра. В соли Er (3+) наблюдается медленная релаксация намагниченности, индуцированная магнитным полем, которая описывается механизмом Орбаха. В солях Ho (3+) и Dy (3+) характерные частоты индуцируемой магнитным полем медленной релаксации лежат за окном доступных частот (до 10 kHz).
- 3. Установлено, что в соли эрбия (3+) с фотохромным катионом возникает искажение координационного полиэдра [ $ErO_8$ ], что является причиной подавления моноионного магнитизма. В этой системе обнаружено редко встречающееся для солей спиропиранов явление твердотельного фотохромизма, которое возникает за счет стабилизации анионом [ $Er(hfac)_4$ ] цвиттер-ионной мероцианиновой формы катиона, обусловленной лабильностью атомов фтора  $C-F_3$  групп.
- 4. Показано, что для синтезированных комплексных солей гексафторацетилацетонатов Ln (3+) происходит увеличение длин координационных связей Ln–O с ростом размера органического катиона, которое коррелирует с уменьшением значений энергетических барьеров релаксации и увеличением значений предэкспоненциальных множителей  $\tau_0$  в температурной зависимости времен релаксации намагниченности.
- 5. Установлено, что в первом нейтральном биядерном ацетилацетонатном (асас) комплексе Dy с со-лигандом пиридин-N-оксидом (PyNO) [Dy(acac)<sub>3</sub>(PyNO)]<sub>2</sub>·2CHCl<sub>3</sub> оба координационных полиэдра [DyO<sub>8</sub>] представляют собой треугольные додекаэдры. Положение максимума магнитной восприимчивости в переменном поле при температурах выше 10 К смещается в сторону более высокой частоты, что характерно для поведения моноионных магнитов. Установлено, что в процесс релаксации намагниченности вносят как рамановский механизм релаксации, так и механизм Орбаха. Понижение локальной симметрии координационного окружения ионов Dy проявляется в увеличении

предэкспоненциального множителя  $\tau_0$  в температурной зависимости времени релаксации и уменьшении значения энергетического барьера релаксации.

6. Впервые разработана методика получения композита нейтрального биядерного ацетилацетонатного комплекса Dy с пиридин-N-оксидом с поливинилпирролидоном в мольном соотношении 1:100, который демонстрирует характерное для моноионных магнитов поведение и увеличение значения предэкспоненциального множителя  $\tau_0$  в температурной зависимости времени релаксации и уменьшении значения энергетического барьера релаксации в сравнении с таковыми для кристаллического комплекса.

### СПИСОК ЛИТЕРАТУРЫ

- [1] Casanova D., Llunell M., Alemany P., Alvarez S. The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study //Chemistry-A European Journal. -2005. V.  $11. N_2$ . 5. P. 1479-1494.
- [2] Alvarez S., Alemany P., Casanova D., Cirera J., Llunell M., Avnir D.. Shape maps and polyhedral interconversion paths in transition metal chemistry //Coordination chemistry reviews. 2005. V. 249. №. 17-18. P. 1693-1708.
- [3] Sheldrick G. M. Crystal structure refinement with SHELXL //Crystal Structure Communications.  $-2015. V.71. N_{\odot}.1. P.3-8.$
- [4] Monguzzi A., Milani A., Mech A., Brambilla L., Tubino R.. Predictive modeling of the vibrational quenching in emitting lanthanides complexes //Synthetic metals. − 2012. − V. 161. − №. 23-24. − P. 2693-2699.
- [5] Jiang S. D., Wang B. W. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior //Angewandte Chemie. − 2010. − V. 122. − №. 41. − P. 7610-7613
- [6] Yi X., Pointillart F., Le Guennic B., Jung J., Daiguebonne C., Calvez G., Guillou O., Bernot, K. Rational engineering of dimeric Dy-based Single-Molecule Magnets for surface grafting //Polyhedron. 2019. V. 164. P. 41-47.

# Список работ по теме диссертации

Статьи в рецензируемых журналах:

- Shtefanets, V. P., Shilov, G. V., Korchagin, D. V., Yureva, E. A., Dmitriev, A. I., Zhidkov, M. V., Aldoshin, S. M. Zero-Field Slow Magnetic Relaxation in Binuclear Dy Acetylacetonate Complex with Pyridine-N-Oxide // Magnetochemistry 2023. V. 9 №4. P. 105.
- 2. Штефанец В.П., Санина Н.А., Шилов Г.В., Дмитриев А.И., Жидков М.В., Алдошин С.М. соль тетракис(гексафторацетилацетоната) диспрозия(III) с 1,1′-диметил-4,4′-бипиридинием новый моноионный магнит//Известия АН. Серия химическая 2024. Т. 73. №. 8. С. 2228.

- 3. Shtefanets V.P., Utenyshev A.N., Lazarenko V.A., Shilov G.V., Dmitriev A.I., Zhidkov M.V., Sanina N.A., Aldoshin S.M. Structure features and magnetic properties of rare earth metals (3+) tetrakis (hexafluoroacetylacetonates) with 1,1'-diethyl-4,4'-bipyridinium dication // Journal of Molecular Structure. 2025. Vol. 1327. P. 141172.
- 4. Shtefanets V.P., Shilov G.V., Yurieva E.A., Babeshkin K.A., Efimov N.N., Sanina N.A., Aldoshin S.M. Mutual influence of photochromic and magnetic sublattices in crystals of erbium (III) tetrakis (hexafluoroacetylacetonate) salt with 1-[(1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline]-8-yl)methyl]pyridinium // Inorganica Chimica Acta. 2025. P. 122755.

Тезисы докладов:

- 1. В.П. Штефанец, Н.А. Санина. Новый редкоземельный МММ: синтез, строение и свойства комплекса диспрозия (3+) с ацетилацетоном и меркаптопиридин-N-оксидом // 64-я Всероссийская научная конференция МФТИ. 29 ноября 3 декабря, 2021 / Долгопрудный, МФТИ
- 2. Shtefanets V. P., Shilov G. V., Efimov N. N., Yurieva E. A., Sanina N. A., Aldoshin S. M. New Erbium (3+) Hexafluoroacetylacetonates with Spirocyclic Photochromes: Synthesis, Structure, Properties //Physics and Chemistry of Elementary Chemical Processes: Proceedings of the 10th International Voevodsky Conference. September 5–9, 2022 / Novosibirsk State University. Novosibirsk: IPC NSU, 2022. P. 255
- 3. Штефанец В.П., Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2023», МГУ, Синтез и исследование магнитных свойств комплекса ацетилацетоната Dy с пиридин-N-оксидом
- 4. V. P. Shtefanets, G. V. Shilov, D. V. Korchagin, E. A. Yureva, A. I. Dmitriev, M. V. Zhidkov, R. B. Morgunov, N. A. Sanina, S. M. Aldoshin. New Approach in the Design of Binuclear Rare Earth Acetylacetonates Demonstrating Zero-field Slow Magnetic Relaxation // X International Conference"High-Spin Molecules and Molecular Magnets". July 5–9, 2023 / Novosibirsk: IPC NSU, 2023. P. 255
- 5. В.П. Штефанец. Строение и магнитные свойства солей тетрагексафторацетилацетонатов лантаноидов (+3) с 4,4'-бипиридиниевыми катионами // XIV Конференция молодых ученых по общей и неорганической химии. 9-12 апреля, 2024 / Москва: ИОНХ РАН
- 6. В.П. Штефанец. Тетрагексафтор-ацетилацетонаты редкоземельных металлов (+3) как перспективные магнитоактивные среды для нано- и микроструктур спиновой электроники // 3-я Международная научно-практическая конференция «Редкие металлы и материалы на их основе: технологии, свойства и применение» посвященная памяти

академика Н.П. Сажина (РЕДМЕТ-2024), 3-5 апреля 2024 / Москва: АО «Гиредмет» им. Н.П. Сажина

- 7. В.П. Штефанец. Новый моноионный магнит: строение и свойства трис(ацетилацетоната) эрбия (3+) с со-лигандом пиридин N-оксидом // Первая всероссийская научно-техническая конференция «Постоянные магниты: Наука и Технологии. Производство. Применение», Суздаль, 25-27 сентября, 2024. С. 38.
- 8. В.П. Штефанец. Строение и свойства тетракис(гексафторацетилацетонатов) эрбия и диспрозия (3+) с 1,1'-диметил-4,4'-винилендипиридинием // 67-я Всероссийская научная конференция МФТИ, г. Долгопрудный, 31 марта 5 апреля, 2025
- 9. В.П. Штефанец. Ln (III) ацетилацетонатные димеры с со-лигандами: от молекул к материалам // XXIX Международная Чугаевская конференция по координационной химии, г. Казань, 23-27 июня, 2025

Заявка на изобретение:

1. В.П. Штефанец, Д.В. Анохин, М.В. Жидков, А.И. Дмитриев, Н.А. Санина, С.М. Алдошин, Полимерные композиты ацетилацетонатов редкоземельных металлов (III) с пиридин-N-оксидом со свойствами медленной магнитной релаксации, способ их получения и применение полимерных композитов ацетилацетонатов редкоземельных металлов (III) с пиридин-N-оксидом со свойствами медленной магнитной релаксации в качестве магнитных сред для устройств наноэлектроники, Заявка № 2025117576 от 25.06.2025 г.

# БЛАГОДАРНОСТИ

Автор выражает особую благодарность научному руководителю — д.х.н. Н.А. Саниной, а также д.ф.-м.н. Г.В. Шилову, к.ф.-м.н. Д.В. Корчагину, к.ф.-м.н. М.В. Жидкову, к.ф.-м.н. А.И. Дмитриеву, к.х.н. Е.А. Юрьевой, академику С.М. Алдошину за помощь в организации экспериментов и обсуждении результатов. Автор также благодарит за неоценимую помощь и поддержку в процессе подготовки диссертации всех сотрудников лаборатории структурной химии ФИЦ ПХФ и МХ РАН.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации: проекты «Основы спиновых технологий и направленное проектирование «умных» полифункциональных материалов для спинтроники и молекулярной электроники» (Соглашение № 075-15-2020-779), «Разработка перспективных систем генерации и хранения энергии для применения в космосе» (Соглашение № 075-15-2024-532) и государственного задания № 124013100858-3.