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Abstract—Advancing of hydrogen and metal hydride energy technologies requires purposeful development of
efficient hydrogen storage materials, particularly, tuning their composition towards optimization of hydrogen
sorption properties suitable for the end-use applications. This study employed linear regression modelling to
analyze hydrogen storage properties of low-, medium- and high-entropy alloys with BCC, C14- and C15-AB2
and AB5 structures found in the literature (>350 entries in total) and to make predictions based on the model
further validated by additional reference data and results of own experiments. It was found that the applied
model gives a good qualitative correspondence with the reference data on hydrogen sorption capacity and
thermodynamics of hydrogen interaction with the alloys but has a limiting predicting capacity allowing only
rough quantitative estimations. It was also concluded that the unit cell volume, valence electron concentra-
tion, and, to a lesser extent, electronegativity mismatch, exhibit strong effects on the hydrogen sorption prop-
erties of the studied alloys while the influence of other factors including the mixing entropy is much less pro-
nounced.
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THEORETICAL ANALYSIS

Introduction

For over several decades, hydrogen has been inves-
tigated as the most promising clean and abundantly
available alternative energy carrier. However, low den-
sity of hydrogen, high energy consumption of physical
methods of its densification along with safety concerns
pose numerous challenging problems. Therefore,
looking for the efficient and safe solutions of hydrogen
handling, particularly, its storage, remains in the focus
of R&D activities worldwide [1–3].

Materials-based hydrogen storage including the
use of (inter)metallic hydrides (MH) is the most
promising way of the solution of above problems [4–
6]. The use of MHs is especially efficient due to high
volumetric storage density, as well as moderate operat-
ing temperatures, hydrogen pressures and consump-
tion of energy taken in the form of low-grade heat [7,
8]. Additional competitive advantage of MH technol-
ogies as compared to the alternative hydrogen han-
dling solutions includes their f lexibility originated
from the possibility of variation of hydrogen sorption
properties in exceptionally wide limits by the variation

of composition of the host multi-component hydro-
gen storage alloy [9].

Over the years, several classes of binary and multi-
component metal alloys have been studied for hydro-
gen storage and related applications. These include
TiFe and its derivatives [8], Laves phase intermetallics
[10], alloys with body–centered cubic (BCC) struc-
ture, e.g., Ti–V–Cr [11], and AB5 intermetallics crys-
tallized in CaCu5-type structure, such as LaNi5 [12].
The entropy of mixing (∆Smix) in binary and ternary
alloys of these types usually ranges from the low
(∆Smix ≤ R where R = 8.314 J K–1 mol–1 is the univer-
sal gas constant) to the medium one (R < ∆Smix ≤
1.5R). The increase of the mixing entropy above
∆Smix = 1.5R, i.e., passing from low- (LEA) and
medium- (MEA) entropy alloys to the high-entropy
(HEA) ones, has been considered as a way for further
improvement of performance of hydrogen storage
alloys. Previous reports have associated high entropy
of mixing in HEAs with increased H2 capacity [13, 14].
Additionally, it is believed that since hydrogen storage
properties are composition-dependent, the wide com-
positional field of multicomponent alloys could pro-
vide an opportunity to design alloy compositions with
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optimized hydrogen storage properties for each spe-
cific application [15]. Lastly, lattice distortion associ-
ated with HEAs resulting from mixing elements with
different atomic sizes, creates better pathways for
hydrogen diffusion [13].

In our recent work [16], we analyzed hydrogen
storage performances of LEAs, MEAs and HEAs
(BCC and AB2-types), as related to their composi-
tion-related parameters including atomic size mis-
match, valence electron concentration (VEC), as well
as mixing entropy and enthalpy. This was done by sta-
tistical analysis of the effect of these parameters on the
enthalpy of hydride formation and H/M ratio. It was
shown that VEC exhibits the most significant effect
while no clear correlations of H/M or enthalpy of
hydride formation with electronegativity and atomic
size mismatch, as well as ∆Smix, were observed. At the
same time, the best correlations were obtained when
the following six key properties of the alloys were
accounted simultaneously:

• VEC;
• Unit cell volume per metal atom;
• The mixing enthalpies of the starting and hydro-

genated alloy;
• Electronegativity mismatch;
• Size mismatch and
• Mixing entropy of the alloy.
Due to complexity of the high entropy alloys, much

attention has been paid to computational simulation
studies based on DFT calculations as well as machine
learning to theoretically establish better understanding
of the design and applications related to these materi-
als. While the DFT simulations are characterized by
time-consuming cycles, low efficiency and high costs,
the machine learning methods provide effective data
processing and strong prediction performance cou-
pled with high accuracy, low computational cost facil-
itated by open access software and short processing
periods, and thus been widely used in materials sci-
ence [17–19]. Rahnama et al. [17] successfully used
supervised machine learning to analyze database pro-
vided by the US Department of Energy on hydrides for
hydrogen storage and different features for determin-
ing hydrogen storage capacity referred to as hydrogen
weight percent. These features were ranked according
to their importance. Ahmed and Siegel [20] predicted
the hydrogen storage capacities of nearly million metal
organic frameworks (MOFs) using machine learning.
The predictions span a diverse collection of MOFs
sourced from 19 databases and reveal performance
under two operating conditions: pressure swing and
temperature + pressure swing. Suwarno et al. [19]
investigated the effect of alloying elements on the
hydrogen storage properties of AB2 alloys, i.e., the
enthalpy of formation (∆H), phase abundance, and
hydrogen capacity using machine learning. Their
database comprised of 314 entries collected from the

literature; the reference information included chemi-
cal compositions and hydrogen storage properties of
the alloys.

In this study, the simplest machine learning algo-
rithm, linear regression analysis, was applied to pre-
dict storage capacity and thermodynamic properties of
multicomponent or multi-principal element alloys,

including the standard Gibbs free energy ( ) and
temperature (TH) at equilibrium H2 pressure equal to 1

atm = 0.101325 MPa, or at  = 0. The used refer-
ence data were published between 2006 and 2023. The
model relates the hydrogen storage properties to a set
of the composition-derived key properties (input
parameters) and the above-mentioned hydrogen stor-
age characteristics (response values). This model aims
to predict hydrogen storage properties of the alloys
using a combination of the input parameters and sub-
sequently provides better pathways for the experimen-
tal studies.

Classification of Multiprincipal Component Alloys 
and their Key Properties

Main property which determines classification of
multi-principal component alloys is the entropy of
mixing (∆Smix) of their components.

The entropy of mixing is mainly defined by a con-
figurational term which is calculated as [21, 22]:

(1)

where Ci is the atomic fraction of the i-th component
in the N-component alloy.

Equation (1) is valid for the liquid or disordered
solid phase with a random distribution of the alloy
components on the lattice sites. For the ordered
phases with several substructures, the mixing entropy
can be calculated as [23]:

(2)

where as is the number of the sites in the s sublattice

and  relates to the fraction of the i-th component in
the s sublattice. Equation (2) assumes a random distri-
bution of the alloy components on the sublattices. We
note that such a random distribution is generally not a
case, in particular, for the A- and B-sites of the AB2 ± x
Laves type phases [24]. Taking into account Eq. (2),
the value of the excess entropy of intermetallic HEAs
may be noticeably higher than the one that could be
calculated by using conventional Eq. (1).

The entropy of mixing is an important factor which
is related to the ordering of the metal atoms in the
crystal lattice of a single-phase alloy and can affect
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various alloy properties. Depending on the value of the
mixing entropy, the alloys are classified into three
groups: low- (LEA; ∆Smix ≤ R), medium- (MEA; R <
∆Smix ≤ 1.5R) and high-entropy (HEA; ∆Smix >1.5 R)
alloys [25, 26].

Another key property is the enthalpy of mixing
(ΔHmix). For an N-component alloy, ΔHmix can be cal-
culated using the regular melt model starting from the
concentrations (C) taken in atomic fractions and
enthalpies of mixing of the i-th and j-th alloy compo-
nents when in the liquid state ( ):

(1)

where .

A negative mixing enthalpy favors homogeneous
intermixing in a molten state and causes fast solidifi-
cation kinetics. Conversely, a positive mixing enthalpy
results in a poor intermixing and a formation of inho-
mogeneous material, with poor solidification kinetics.
Hence, the mixing enthalpy can be utilized as a useful
controlling parameter when designing the alloy’s
composition prior to its synthesis [27].

Another parameter influencing the phase stabilities
in the HEAs is valence electron concentration (VEC).
It is defined as a weighted average of the VECs (vi) for
the alloy components:

(4)

As we wrote in our review [16], most frequently, the
reference values of Vi when calculating VEC by Eq. (4)
are taken as a total number of the electrons in the outer
shell of the element [28] while more correct approach
should account only electrons participating in the
metallic bonding1. That is why, along with the conven-
tionally calculated VEC (where the values of vi
were taken from the number of electrons in the
outer shell), we also used similarly calculated value
(further denoted as VECP) where the reference values
of vi corresponded to Pearson’s valence of the i-th
component [29].

The next key property considered in this work is the
electronegativity mismatch (Δχ) which can be calcu-
lated from the electronegativities of the alloy constitu-
ents according to the Eq. (5)):

(5)

1 The differences in vi taken from the various reference datasets
are especially pronounced for the d-elements of Groups 7–12
[16].
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where  is electronegativity of the i-th component

and  is the average electronegativity.

The last composition-dependent key property is
the atomic size mismatch (δ) related to the differences
between the atomic radii of the alloy components:

(6)

where ri is atomic radius of the i-th component and

 is the average atomic radius.

Other important factors usually not considered in
the works describing key properties of the multicom-
ponent alloys including HEAs but strongly affecting
their hydrogen sorption properties include unit cell
volume per one averaged metal atom (VM) calculated
from the crystallographic data, as well as the mixing
enthalpy of the hydrogenated alloy ( ) calculated
using Eq. (3) additionally accounting presence of
hydrogen atoms (corresponding to the observed
hydrogen-to-metal ratio, H/M) in the alloy’s compo-
sition.

Detailed analysis of the key properties of HEAs
described above is presented in our review [16] and
references therein.

Background on Thermodynamics 
of Hydride–Forming HEAs

The formation of hydrides of alloys is a complex
thermodynamic phenomenon that relies primarily on
factors such as the composition of the alloy, tempera-
ture, pressure, and the properties of the individual
constituents. To elucidate the thermodynamic proper-
ties of the hydride formation, Gibbs free energy,
enthalpy, entropy and temperature are the key param-
eters to consider.

Hydrogen storage utilizing any hydride-forming
metal or alloy, M, involves direct (hydrogen uptake or
hydrogenation) and reverse (hydrogen release or
dehydrogenation) processes of the reversible reaction
of the parent metal/alloy with hydrogen gas to form
metal hydride (MHx):

(7)

The direction of Reaction (7) is determined by the
sign of the change of the system Gibbs free energy

( ) which depends on the process enthalpy ( ),

entropy ( ) and temperature (T) [16]2:

(8)

2 The superscript “°” refers to the standard conditions: P =
1 atm = 0.101325 MPa; T = 300 K.
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The value of  also determines a relationship
between the temperature and the equilibrium hydro-
gen pressure, P0 ≈ const, in the plateau region of the
H2–M system (i.e., where the phases of α-solid solu-
tion of hydrogen in the host metal and β-hydride co-
exist), via the entropy and enthalpy changes for Reac-
tion (7) through the van’t Hoff equation [9]:

(9)

where PΘ = 1 atm = 0.101325 MPa is the reference
pressure which corresponds to a standard state, R is

the universal gas constant, T (K) is temperature, 

(J K–1 mol (H2)–1) and  (J mol (H2)−1) represent
the standard entropy and enthalpy of hydrogenation,
respectively.

For the spontaneous hydrogenation (direct

process of Reaction (7)), the value of  will be neg-

ative. Conversely, at  > 0, the reverse process
(dehydrogenation) takes place spontaneously. When

Reaction (7) is at equilibrium,  is equal to zero
that corresponds to the equilibrium temperature,
T = TH, which can be calculated as solution of Eq. (8)

at  = 0:

(10)

The direct process of Reaction (7) is characterized

by the negative entropy change (  < 0) because the

HG°Δ

( )Θ
0Ln ,H H HG S HP P

RT R RT

° ° °Δ Δ Δ= = − +

HS°Δ

HH °Δ

HG°Δ

HG°Δ

HG°Δ

HG°Δ

.H
H

H

HT
S

°Δ=
°Δ

HS°Δ

condensed state is more ordered than the gaseous state
due to the loss of at least one degree of translational
freedom [30]. For most of hydride–forming alloys,

 is close to –130 J K–1 mol (H2)–1 since the major
contribution to the reaction entropy change is from
the change in state from molecular hydrogen gas,
SΘ(H2(g)) = 130.7 J K–1 mol–1, to hydrogen in the
solid for which the entropy, SΘ(H(s)), is assumed to be
zero [31].

The change of direction of Reaction (7) from the
direct (hydrogenation) to the reverse (dehydrogena-

tion) will take place when the value of  changes it
sign from “–” to “+” passing zero. Taking into
account that the second term of right-hand part of
Eq. (8) will be always positive, it may happen only

when  < 0, i.e., if the hydrogenation is exother-
mic. In doing so, at the pressure of 1 atm which corre-
sponds to the standard state and T < TH, spontaneous
hydrogenation occurs while at T > TH it will be
reversed to dehydrogenation passing equilibrium at
T = TH. Accordingly, at T = TH and P > P0, P = P0 and
P < P0, hydrogenation, equilibrium and dehydrogena-
tion, respectively, will be observed. This is illustrated
by Fig. 1 derived from our recently published experi-
mental data [32] for the C14-AB2-type high entropy
alloy Ti0.85Zr0.15Cr0.2Mn1.22Ni0.22V0.3Fe0.06 prepared by
arc melting.

Though the described approach does not take into
account such features of real hydrogen—metal systems
like hysteresis and plateau slope [33], it is useful for
deriving empiric interrelation between the key proper-
ties of the alloys analyzed in this study and thermody-

HS°Δ

HG°Δ

HH °Δ

Fig. 1. Thermodynamic behavior of the system of H2 gas with C14-AB2-type HEA (  = –31.88 kJ mol (H2)−1;  =
‒117.74 J K–1 mol (H2)−1) [32]. (a) Temperature dependence of the Gibbs free energy change. (b) Pressure–composition iso-
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namics of their interaction with H2 gas with the help of
machine learning.

METHODOLOGY

Dataset

The reference data for the BCC and AB2-type
Laves phase alloys was taken from our review articles
[10, 16] and supplemented by the data for the AB5-
type intermetallics [34–47]. The database consists of a
total of 354 entries, of which 101 are BCC, 64 are AB5,
and 189 are AB2–based Laves phase (156 C14 and
33 C15) alloys. Each entry contains information about
VEC, VECP, ẟ, Δχ, ∆Hmix, and ∆Smix for every alloy
(calculated from its composition). Additionally, the
values of VM were included, along with the hydrogen
storage properties, i.e., H/M ratio, as well as standard

enthalpy ( ) and entropy ( ) of the hydrogena-
tion. The standard Gibbs free energy of hydrogen

absorption ( ), and temperature (TH) at which

 = 0) were calculated for each material from the

values of  and , using Eqs. (8) and (10).
Table 1 summarizes the data about mixing entro-

pies for the alloys analyzed in this work. The inclusion

HH °Δ HS°Δ

HG°Δ

HG°Δ

HH °Δ HS°Δ

of low- (LEA) and medium-entropy alloys (MEA)
along with the high-entropy (HEA) ones is to allow
the model developed in this work to predict all the
three categories.

Linear Regression

The correlations between the input variables (Xi)
and the response values (Y) were analyzed using the
simplest linear regression equation:

(11)

where Y = H/M,  or TH, and the regression coef-
ficients A1…A7 determine the forecasted effects of the
corresponding key properties accounted by the vari-
ables X1…X7 on the response value.

The list of the regression coefficients and the cor-
responding input variables is presented in Table 2.
The values of the regression coefficients A0…A7 were
calculated by the fitting of the reference dataset, sepa-
rately for the BCC, C14-AB2, C15-AB2 and AB5
alloys. Separate fitting sessions were also applied for

the different response values (H/M,  or TH), as
well as for the valence electron concentrations taken
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Table 1. Summary of the data on mixing entropies for the alloys analyzed in this work

Structure

Number of entries

LEA:
∆Smix ≤ R

MEA:
R < ∆Smix ≤ 1.5R

HEA: 
∆Smix > 1.5R SUM

BCC 6 59 36 101
AB2 29 97 63 189
AB5 2 56 6 64
Total 37 212 105 354

Table 2. List of the regression coefficients and the corresponding input variables

Coefficient 
Ai

Variable 
Xi

Meaning (units) Notation

A0 – Free term at all Xi = 0 –
A1 X1 Unit cell volume per one averaged metal atom, Å3 VM

A2 X2 Enthalpy of mixing for the alloy, kJ g-at(M)–1 ΔHmix

A3 X3 Enthalpy of mixing for the hydride, kJ g-at(M + H)–1

A4 X4 Entropy of mixing for the alloy, J K–1 g-at(M)–1 ΔSmix

A5 X5 Electronegativity mismatch, % Δχ
A6 X6 Size mismatch, % δ
A7 X7 Valence electron concentration determined from total number of electrons 

in the outer shell (VEC) or Pearson’s valence (VECP)
VEC or VECP

mix
HHΔ
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from the different starting data (VEC or VECP).
In total, 24 fitting sessions (4 for different alloy struc-
tures × 3 for different response values × 2 for different
reference data for valence electron concentrations)
were done.

For the evaluation of adequacy of the fitting results,
the reference (x = Yk) and calculated (y = Y(xk)) values
of the responses were plotted together and fitted using
linear regression equation:

(12)
Furthermore, the following adequacy parameters

have been determined:
• Total sum of squares (TSS):

(13)

• Residual sum of squares (RSS):

(14)

• Coefficient of determination (R2):

(15)

• Mean square error (MSE):

(16)

Sensitivity Analysis
Application of the simplest linear regression model

(Eq. (11)) is useful for the estimation of the effect of
the parameter change on the changes of the response
parameter (sensitivity). It is proportional to the value
of Ai (i ≥ 1). For the correct comparison when the
scales of parameters Xi are different, it is necessary to
introduce normalization coefficient assumed to be
related to the range of the parameter change.

Sensitivity of a function Y(X1, X2, … Xn) to the argu-
ment Xi can be estimated from its partial derivative,
∂Y/(∂Xi) . For the uniform scaling of the argument Xi,
it can be transformed to a normalized argument, ti, as:

(17)

where  and  are the minimum and maxi-
mum values of the argument Xi; so, the variation of

each Xi between  and  will result in the uni-
form variation of ti between 0 and 1. Accordingly:
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where ΔXi =  –  is the variation range of the
i-th input variable.

Finally, the sensitivity to the argument Xi (si) will be
equal to:

(20)

Validation and Experimental Procedure
For the validation of the regression analysis results,

we used the recently published reference data on the
BCC [48], C14-AB2 [49], C15-AB2 [50] and AB5 [51]
alloys. Additionally, we have experimentally tested
several hydrogen storage alloys of BCC, C14-AB2 and
AB5 types. The combined data on the alloys’ structure,
composition and hydrogen sorption properties are
summarized in Table 3.

The alloys for the experimental tests were prepared
from industrial-grade quality metals (purity 99.8%)
using small-to-medium scale (single batch up to 1 kg)
arc-melting facility (non-consumable tungsten elec-
trode and water-cooled hearth) under atmosphere of
the purified argon. To provide compositional homo-
geneity, each ingot was turned over and re-melted
three times. The alloys were studied in the as-cast
state.

The elemental composition of the alloys was stud-
ied by the atomic emission spectroscopy with induc-
tively coupled plasma (iCAP 6300 Thermo Electron
instrument) and X-ray f luorescent analysis (Rigaku
Nex DE VS instrument). The input parameters for the
regression analysis were calculated from the alloys
composition according to the results of analysis.

The X-ray diffraction analysis (XRD, Rigaku
MiniFlex instrument) has confirmed the phase com-
position of the alloys when the content of the major
phase (BCC, C14-AB2 or AB5) exceeded 95%. The
lattice periods of the major phase were further calcu-
lated from the XRD data followed by the calculation of
the unit cell volume starting from the lattice periods,
unit cell geometry and number of the formula units in
the unit cell.

Hydrogen sorption properties of the alloys were
studied using H-Sorb 2600 PCT gas sorption analyzer
(Beijing CI Ultrametrics Technology Co, Ltd) by
measuring hydrogen absorption and desorption pres-
sure–composition isotherms (T = 293–353 K,
P(H2) = 0.01–5.0 MPa). The value of H/M (sixth col-
umn of Table 3) used for the comparison with the
regression analysis results was directly measured as a
maximum hydrogen absorption capacity of the alloy at
the minimum temperature and the maximum hydro-
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Table 3. Hydrogen sorption properties of the samples taken for the model validation

Structure

Composition Reference

Hydrogen sorption properties

type lattice 
periods, Å

unit cell 
volume per 
metal atom 

(VM, Å3)

H/M J K−1 mol 
(H2)−1

J mol 
(H2)−1

BCC a = 3.035 13.98 V75.02Ti9.97Zr7.48Cr7.52 This work 1.80 –132.28 –43.32

a = 3.040 14.05 V35Ti35Cr10Fe10Ni10  [48] 1.18 –130.99 –47.83

C14-AB2 a = 4.891
c = 8.006

13.82 Ti0.87Zr0.13Cr0.22Mn1.32Ni0.14V0.31Fe0.06 This work 0.92 –117.74 –31.88

a = 4.949
c = 8.119

14.35 Ti0.5Zr0.5Mn0.62Fe0.67Cr0.67 This work 0.99 –115.15 –30.77

a = 4.999
c = 8.148

14.69 TiZrFeMnCrV  [49] 1.16 –117.86 –44.07

C15-AB2 a = 7.034 14.50 Ti0.15Zr0.85La0.03Ni1.126Mn0.657V0.113Fe0.113  [50] 1.10 –113.33 –35.25

AB5 a = 4.979
c = 4.056

14.52 La0.41Ce0.59Ni3.5Co0.53Mn0.57Al0.22Cr0.08 This work 0.92 –112.20 –35.61

a = 5.022
c = 4.034

14.68 La0.65Ce0.2Ca0.15Ni4.5Mn0.4Al0.1  [51] 1.11 –107.56 –35.31

,HS°Δ ,HH °Δ

gen pressure. The values of  (at T = 300 K) and TH
were calculated using equations (8) and (10), respec-

tively, from the values of  and  (two last col-
umns of Table 3) calculated by the fitting of the exper-
imental isotherms with the model [33].

RESULTS AND DISCUSSION
Statistics of the Reference Data

Figure 2 shows distribution histograms of the mix-
ing entropies (A), hydrogen storage capacities in H/M
units (B), equilibrium temperatures (C) and standard
Gibbs free energies of hydrogenation (D) for the sin-
gle-phase alloys of different types analyzed in this
work.

As it can be seen from Fig. 2a and Table 1, most of
the studied alloys represent the medium-temperature
ones (MEAs). This is caused by specifics of the multi-
component hydrogen storage alloys (especially, inter-
metallic ones) which must have a certain balance of
the components characterized by high (e.g., Ti, Zr, V)
and low (e.g., Ni, Cr, Mn, Fe) affinity to hydrogen
and must not always present in the alloy’s composition
in the equal atomic fractions [6, 16].

For the hydrogen absorption capacities of the
alloys, the distribution maxima correspond to the typ-
ical values for the similar low- and medium-entropy
hydride-forming alloys: 1.9–2.0 H/M for BCC and
0.8–1.0 H/M for the AB2- and AB5-type intermetal-
lics (Fig. 2b). Similar situation is observed for the

HG°Δ

HS°Δ HH °Δ

equilibrium temperatures (Fig. 2c; TH = 220–240 K
for AB2, 300–320 K for BCC and 380–400 K

for AB5) and, finally, for  (Fig. 2d; from –6.6 to
‒5.0 kJ mol (H2)–1 for AB5, from –5.1 to –3.2 kJ mol
(H2)–1 for BCC and from +6.6 to +8.3 kJ mol (H2)–1

for AB2). These observations additionally confirm our
statement that hydrogen sorption performances of
LEAs, MEAs and HEAs are very similar and primarily
depend on the structural features and the nature of
their constituents rather than on other key properties
of the alloys which ignore these features [16].

Linear Regression Analysis

Table 4 presents the results of regression analysis
(Eq. (11)) of the reference data for the alloys analyzed
in this work when the fitting parameters A0…A7 were
calculated by the separate fitting of each response

(H/M, TH and ) for the datasets representing the
single-phase alloys with BCC, C14-AB2, C15-AB2
and AB5 structures when the reference data on the
valence electron concentration were taken either from
the total number of electrons in outer shells of the con-
stituent elements (VEC), or from their Pearson’s
valence (VECP).

It is seen that the simple linear regression (Eq. (11))
gives acceptable adequacy of the calculated and refer-
ence data, with the values of correlation coefficient,
R2, above 0.5 and mostly above 0.8–0.9.

HG°Δ

HG°Δ



HIGH ENERGY CHEMISTRY  Vol. 58  Suppl. 4  2024

MACHINE LEARNING-ASSISTED STUDY OF LOW-, MEDIUM-, AND HIGH-ENTROPY S535

Fig. 2. Distribution histograms of mixing entropies (a), hydrogen sorption capacities (b), standard Gibbs free energies of hydrogen
absorption (c) and equilibrium temperatures (d) for the alloys analyzed in this work.
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The poorer correlations for TH,  (AB5), H/M
(BCC), have their origin in the fact that noticeable
deviations of these parameters from the trend line
result in the appearance of the non-zero calculated
intercept (a0 > 0 in Eq. (12)) that, in turn, causes the
decrease of the calculated slope (0 < a1 < 1 in Eq. (12))
proportional to R2. When comparing the reference
and calculated data using Eq. (12) and fixing the
intercept a0 = 0 (that should be in the case of complete
adequacy), the values of R2 for all the datasets were
above 0.9.

Comparison of the calculated and reference data
for the alloys of different structures taken together
(Eq. (12) without fixing the intercept a0; see Table 5
and Fig. 3) yields good adequacy parameters, with the
values of R2 above 0.9 for all the response values.

It is also seen from Table 4 that the fitting results
obtained for the different reference data taken for the

HG°Δ valence electron concentration are quite close to each
other.

Sensitivity Analysis

Table 6 presents the values of sensitivities of the
response parameters (Eq. (11)) to the changes of input
variables X1…X7 normalized using Eq. (17). The sensi-
tivities were calculated from the fitted values of the
regression coefficients A1…A7 using Eq. (20). The
results of the sensitivity analysis are presented as
graphs (Fig. 4) plotted for the reference data on
valence electron concentration taken from the Pear-
son’s valence.

The calculated values of the sensitivities taken for

the different response parameters (H/M,  and
TH) correlate with each other when the sensitivities for
both H/M and TH exhibit proportionality to the corre-

HG°Δ
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sponding negated sensitivities for . Taking into
account close values of the hydrogenation standard

entropies, , for the metallic hydrides (see section
“Background on thermodynamics of hydride–form-
ing HEAs” above), the standard Gibbs free energy of
the hydrogenation determines stability of hydrides
proportional to the negated standard enthalpy of the

HG°Δ

HS°Δ

hydrogenation, . Accordingly, the more nega-

tive the value of , will be, the higher will be both
hydrogen-to-metal ratio and the equilibrium tempera-
ture.

It should be also noted that correlations between

the sensitivities of  and H/M are poorer, and the

HH °−Δ

HG°Δ

HG°Δ

Table 5. Adequacy parameters of the linear regression modelling (Eq. (11)) when comparing the reference data and calcu-
lation results for the alloys belonging to all studied classes for VEC calculated from the Pearson’s valence

Response

Linear regression 
coefficients: y = a0 + a1x Statistics

a0 a1 N TSS RSS R2 MSE

H/M 0.09 ± 0.02 0.92 ± 0.02 309 54.322 4.1237 0.9241 0.01343
TH 19 ± 6 0.94 ± 0.02 197 1463463 92103 0.9371 472.33

–0.04 ± 0.15 0.94 ± 0.02 197 16002 874 0.9454 4.4813
HG°Δ

Fig. 3. Comparison of the regression analysis (Eq. (11)) results (y) for H/M (A), TH (B) and  (C) response values with the
reference data (x) for the alloys studied in this work ( —BCC; —C14-AB2; —C15-AB2; ×—AB5; dashed line—common lin-
ear fit y = a0 + a1x, see Table 5). The graphs are presented for VEC calculated from the Pearson’s valence.
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absolute values of the sensitivities of H/M for the BCC
alloys are much lower than the ones for other alloys.
First of all, it is caused by the variation of the hydroge-
nation conditions at which the hydrogen capacities
were reported.

Generally, the observed tendencies are similar to
those identified for hydrogen sorption capacities of
BCC and AB2 HEAs [16] when the strongest effects
were observed for unit cell volume (X1 = VM) and
valence electron concentration (X7 = VEC or VECP).
The former parameter exhibits high negative values of

the sensitivity (s1 < 0) for  that corresponds to the
strong increase of the negated standard Gibbs energy
and, accordingly, decrease of the plateau pressures
(Eq. (9)) when increasing the unit cell volume. It is in

HG°Δ

line with well-known fact that the logarithm of the
plateau pressure linearly decreases with the increase of
the unit cell volume of the parent intermetallic [52].

Valence electron concentration exhibits less strong
but still significant effect on the hydrogen sorption
properties of the studied alloys. This effect is different
for the different alloy structures and, for AB5-type
alloys, for the different datasets taken for VEC calcu-
lations (see last three rows in Table 6)3. If considering
VECP, its effect (s7) increases in the series BCC <
C15-AB2 < 0 < C14-AB2 ≈ AB5.

3 Most probably, the origin of this deviation is in significant dif-
ference of the reference data for Ni (outer shell VEC = 10, Pear-
son’s maximum valence VECP = 6 [16]) to be main component
in most of AB5-type hydrogen storage alloys.

Table 6. Summary of sensitivities of the response parameters (Eq. (11)) to the normalized input variables for the single-
phase alloys analyzed in this work. The units of sensitivities correspond to the units of the response parameters (dimension-
less for H/M, kJ mol(H2)–1 for ΔGo

H, K for TH)

Dataset Sensitivity for the variable

Structure Response VEC data X1 (VM) X2 (ΔHmix) X3 ( ) X4 (ΔSmix) X5 (Δχ) X6 (ẟ) X7 (VEC)

BCC H/M VEC 0.0018 0.0001 –0.0033 0.0014 –0.0012 –0.0034 0.0137

VECP 0.0032 0.0001 –0.0030 0.0013 –0.0012 –0.0017 0.0201

TH VEC 18.8391 0.1495 0.0718 0.5168 –0.2970 5.4832 10.4678

VECP 18.1452 0.1937 0.0647 0.3896 –0.1886 5.1085 12.1338

VEC –1.8132 0.0096 0.0329 –0.1185 0.0473 –0.3529 –1.7480

VECP –1.6926 0.0021 0.0339 –0.0970 0.0291 –0.2891 –1.9976

C14-AB2 H/M VEC 0.0033 –0.0001 –0.0027 –0.0006 0.0008 –0.0002 0.0071

VECP 0.0071 –0.0001 –0.0027 –0.0007 0.0009 –0.0003 0.0205

TH VEC 30.4269 0.0766 0.1376 –0.5812 –2.6277 2.4362 –5.2103

VECP 26.9385 0.0528 0.1268 –0.4877 –2.7394 2.4722 –15.2360

VEC –3.4919 –0.0083 –0.0122 0.0595 0.2862 –0.2412 0.4283

VECP –3.0711 –0.0064 –0.0115 0.0496 0.2950 –0.2463 1.4616

C15-AB2 H/M VEC 0.2656 0.0010 –0.0058 0.0094 –0.0344 0.0181 –0.0296

VECP –0.5689 –0.0001 –0.0061 0.0052 –0.0016 0.0070 –0.1612

TH VEC 169.0635 0.0069 –0.0843 –4.1236 –5.5020 1.1212 13.6155

VECP 50.0603 0.0065 –0.1219 –3.8327 –3.1970 1.8273 5.9790

VEC –14.3640 0.0081 0.0002 0.5626 –0.0203 0.0738 –0.7973

VECP –8.2441 0.0072 0.0022 0.5424 –0.1253 0.0248 –0.4676

AB5 H/M VEC –0.0816 –0.0004 –0.0083 –0.0029 –0.0112 0.0055 0.0055

VECP –0.1269 –0.0004 –0.0083 –0.0023 –0.0119 0.0058 –0.0083

TH VEC 81.5240 0.2821 –0.6870 –2.7977 –1.5388 1.1204 12.5753

VECP 16.5611 0.2092 –0.7217 –0.2244 –1.1690 1.5027 –12.3516

VEC –9.5113 –0.0259 0.0603 0.3401 0.1110 –0.0864 –1.5723

VECP –0.8998 –0.0166 0.0649 0.0301 0.0820 –0.1352 1.6332

mix
HHΔ

HG°Δ

HG°Δ

HG°Δ

HG°Δ
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The strong effect of valence electron concentration
on the hydrogen sorption properties of the high
entropy alloys was reported earlier [16, 53].

A certain effect was also observed for the electro-
negativity mismatch (X5 = Δχ) while the sensitivities to
other input variables were found to be much lower on
their absolute values than the ones for X1 = VM, X7 =
VECP and X5 = Δχ. An exception is the mixing
entropy (X4 = ΔSmix) for C15-AB2 intermetallics whose

effect, s4 < 0 for  is comparable with the effect of
the electronegativity mismatch (s5 < 0). However,
considering relatively small number of the processed
entries for this class of the alloys (see the third column
of Table 4), this finding needs additional verification.

The results of the sensitivity analysis are in a satis-
factory correspondence with the conclusions of Ek
et al. [54] who evaluated compositional effects on
hydrogen sorption performances of 15 Ti–V–Zr–
Nb–Hf-based HEAs with BCC structure and found
linear dependencies of H/M or onset temperature of

HG°Δ

hydrogen desorption on the volumetric expansion of
the crystal lattice per metal atom, valence electron
concentration, and average electronegativity of the
alloys while no correlation was observed for the size
mismatch.

Validation

The experimental and reference data on the hydro-
gen sorption properties of the alloys selected for the
validation of the regression analysis modelling
(Table 3) have been compared with the calculation
results using Eq. (11) and the input variables presented
separately (VM) or calculated from the composition of
the pristine (ΔHmix, ΔSmix, Δχ, ẟ, VECP) or hydroge-

nated ( ) alloy.

It is seen from Table 7 that the realistic predictions
of the linear regression modelling were achieved for
the equilibrium temperatures, TH, when the devia-
tions, (Calculated–Observed), were between –55 and

mix
HHΔ

Fig. 4. Sensitivities of the response parameters (Eq. (11)) to the normalized input variables for the single-phase alloys analyzed in
this work when VEC data were taken from Pearson’s valence.
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+38 K, or mostly below ±(10–15)% of the observed/
reference value.

For the hydrogen sorption capacities, as a rule, the
deviations did not exceed ±0.1 H/M, but for the BCC
alloy V35Ti35Cr10Fe10Ni10 and C14 Laves phase
Ti0.87Zr0.13Cr0.22Mn1.32Ni0.14V0.31Fe0.06 they amounted
+0.68 and –0.36 H/M, or +58 and –39% of the refer-
ence value, respectively. Such discrepancies (also tak-
ing into account the highest spread of the reference
and calculated data for H/M observed during regres-
sion analysis; see Fig. 3a) are, most probably, caused
by the oversimplified model (Eq. (11)) not accounting
non-linearity and the mixed effects of the different

factors, as well as possible influence of additional fac-
tors not included in the consideration.

It is well known that the hydrogen sorption capac-
ities of the metallic hydrides strongly depend on the
size of the interstitials in the metal matrix and chemi-
cal nature of the elements in the vertexes of the inter-
stitials [6]. Accordingly, the empirical modelling
which accounts these factors only indirectly and con-
siders their total effects (VM for the size of interstitials
ignoring their kind and surrounding; average VEC and
electronegativity for the chemical nature of the sur-
rounding elements), may cause significant deviations

Table 7. Comparison of the observed hydrogen sorption characteristics with the ones calculated using results of the linear
regression analysis (Eq. (11), Table 4) for VEC calculated from the Pearson’s valence

Structure Alloy Reference Response (Y) Observed Calculated Deviation

BCC V75.02Ti9.97Zr7.48Cr7.52 This work H/M 1.80 1.85 +0.05

TH (K) 327 303 –24

 kJ mol (H2)–1 –3.636 –7.739 –4.103

V35Ti35Cr10Fe10Ni10  [48] H/M 1.18 1.86 +0.68

TH (K) 365 403 +38

 kJ mol (H2)–1 –8.533 –9.025 –0.492

C14-AB2 Ti0.5Zr0.5Mn0.62Fe0.67Cr0.67 This work H/M 0.99 1.00 +0.01

TH (K) 271 281 +10

 kJ mol (H2)–1 3.442 2.035 –1.407

Ti0.87Zr0.13
Cr0.22Mn1.32Ni0.14V0.31Fe0.06

This work H/M 0.92 0.56 –0.36

TH (K) 271 240 –31

 kJ mol (H2)–1 3.442 6.511 +3.069

TiZrFeMnCrV  [49] H/M 1.16 1.11 –0.05

TH (K) 374 319 –55

 kJ mol (H2)–1 –8.712 –2.106 +6.606

C15-AB2 Ti0.15Zr0.85La0.03
Ni1.126Mn0.657V0.113Fe0.113

 [50] H/M 1.10 1.09 –0.01

TH (K) 311 306 –5

 kJ mol (H2)–1 –1.251 –0.614 +0.637

AB5 La0.41Ce0.59
Ni3.5Co0.53Mn0.57Al0.22Cr0.08

This work H/M 0.92 0.90 –0.02

TH (K) 317 339 +21

 kJ mol (H2)–1 –1.950 –3.823 –1.873

La0.65Ce0.2Ca0.15
Ni4.5Mn0.4Al0.1

 [51] H/M 1.11 1.05 –0.07

TH (K) 328 341 +13

 kJ mol (H2)–1 –3.043 –4.089 –1.046

HG°Δ

HG°Δ

HG°Δ

HG°Δ

HG°Δ

HG°Δ

HG°Δ

HG°Δ
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of the reference data and results of the empirical cal-
culations.

The deviations between the observed/reference

and calculated values of  were found to also be too
high amounting from –4 to +6 kJ mol (H2)–1 that cor-
responds to the deviations of the plateau pressures
(Eq. (9)) up to more than two orders of magnitude.

Taking into account the above-mentioned, it can
be concluded that the approach undertaken in this
study has a limiting predicting capacity and allows
only very rough quantitative estimations. Neverthe-
less, we consider it as quite useful since it allows us to
estimate the contribution of each key property of
multi-component hydrogen storage alloys into their
main hydrogen sorption performances. As it was
shown the previous sections, the most significant fac-
tors relate to the structure (type and unit cell volume)
and chemical nature of the alloy components (VEC,
electronegativity) while the effect of other properties
related to LEAs, MEAs and HEAs themselves (first of
all, ΔSmix) remains minor if not negligible (Fig. 4).
This finding is in line with our earlier conclusion [16]
that hydrogen storage performances of the low-
medium- and high-entropy alloys are rather similar4,
and thus hydride-forming HEAs might be considered
as a group of conventional hydrogen storage alloys
rather than their separate class.

Presently, we continue analysis of interrelation
between the key properties and hydrogen sorption per-
formance of the multi-principal component alloys, by
applying advanced supervised machine learning mod-
els including decision tree and random forest ones.
Though results of this study will be published later,
preliminary findings showed that prediction capacity
of the applied models is similar to the one reported in
this article, with better adequacy of the random forest
model.

On our opinion, further studies in this direction
should be focused on the detailed analysis of the
entries characterized by the maximum deviations of
the observed / reference data from the calculated trend
line that will assist one to reveal additional factors
impacting hydrogen storage properties of hydrogen
storage materials and, in turn, to create a reliable guid-
ing tool for the selection or purposeful development of
efficient materials for hydrogen and metal hydride
energy technologies.

4 Certainly, it relates only to the properties (H/M, TH and )
considered in this work. Other properties of hydrogen—metal
systems including hysteresis and plateau slope may exhibit cer-
tain correlations with the key properties of HEAs. However,
analysis of these correlations is not possible now, due to the lack
of the corresponding reference data.

HG°Δ

HG°Δ

CONCLUSIONS
• Machine learning-assisted study of the low-

medium- and high-entropy hydrogen storage alloys,
which crystallize in BCC, C14- and C15-AB2, and
AB5 structures, has been conducted by linear regres-
sion analysis of the multi-factor correlation between
the key properties of the alloys (mixing entropy and
enthalpy, size and electronegativity mismatches, aver-
age valence electron concentration, unit cell volume
per the metal atom) and their hydrogen sorption prop-
erties including hydrogen-to-metal atomic ratio, equi-
librium temperature and the standard Gibbs free
energy of hydrogenation.

• Comparison of the linear regression analysis
results with additional reference and experimental
data has shown that the applied model exhibits good
qualitative correspondence with the reference data but
has a limiting predicting capacity and allows only
rough quantitative estimations.

• Based on sensitivity analysis, it was concluded
that the unit cell volume, valence electron concentra-
tion, and, to a lesser extent, electronegativity mis-
match, exhibit strong effects on the hydrogen sorption
properties. The influence of other factors including
the mixing entropy is minor if not negligible.

• Further machine learning studies of the low-
medium- and high-entropy hydrogen storage alloys,
including application of advanced supervised machine
learning algorithms, should be focused on the detailed
analysis of the entries characterized by the maximum
deviations of the observed/reference data from the cal-
culated trend that will allow one to reveal additional
factors impacting hydrogen storage properties of
hydrogen storage materials and, in turn, to create a
reliable guiding tool for the selection or purposeful
development of efficient materials for hydrogen and
metal hydride energy technologies.
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